Home
Class 12
MATHS
Find the sum of possible real values of ...

Find the sum of possible real values of `x` for which the sixth term of `(3^(log_3 sqrt(9^|x-2|))+7^(1/5 log_7 (3^(|x-2|-9))))^7` equals 567.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of possible real values of \( x \) for which the sixth term of the expression \[ (3^{\log_3 \sqrt{9^{|x-2|}}} + 7^{\frac{1}{5} \log_7 (3^{|x-2|-9})})^7 \] equals 567. ### Step-by-Step Solution: 1. **Identify the sixth term**: The expression is in the form of \( (a + b)^7 \). The sixth term, \( T_6 \), can be expressed as: \[ T_6 = \binom{7}{5} a^2 b^5 \] where \( a = 3^{\log_3 \sqrt{9^{|x-2|}}} \) and \( b = 7^{\frac{1}{5} \log_7 (3^{|x-2|-9})} \). 2. **Calculate the binomial coefficient**: \[ \binom{7}{5} = \frac{7!}{5! \cdot 2!} = \frac{7 \cdot 6}{2 \cdot 1} = 21 \] 3. **Simplify \( a \)**: \[ a = 3^{\log_3 \sqrt{9^{|x-2|}}} = 3^{\log_3 (9^{|x-2|})^{1/2}} = 3^{\frac{1}{2} \log_3 (9^{|x-2|})} = 3^{\frac{1}{2} \cdot 2|x-2|} = 3^{|x-2|} \] 4. **Simplify \( b \)**: \[ b = 7^{\frac{1}{5} \log_7 (3^{|x-2|-9})} = 3^{|x-2|-9} \] 5. **Substituting \( a \) and \( b \) into \( T_6 \)**: \[ T_6 = 21 \cdot (3^{|x-2|})^2 \cdot (3^{|x-2|-9})^5 \] \[ = 21 \cdot 3^{2|x-2|} \cdot 3^{5(|x-2|-9)} = 21 \cdot 3^{2|x-2| + 5|x-2| - 45} = 21 \cdot 3^{7|x-2| - 45} \] 6. **Set \( T_6 \) equal to 567**: \[ 21 \cdot 3^{7|x-2| - 45} = 567 \] 7. **Divide both sides by 21**: \[ 3^{7|x-2| - 45} = \frac{567}{21} = 27 \] 8. **Express 27 as a power of 3**: \[ 27 = 3^3 \] 9. **Set the exponents equal**: \[ 7|x-2| - 45 = 3 \] \[ 7|x-2| = 48 \] \[ |x-2| = \frac{48}{7} \] 10. **Solve for \( x \)**: - Case 1: \( x - 2 = \frac{48}{7} \) \[ x = 2 + \frac{48}{7} = \frac{14 + 48}{7} = \frac{62}{7} \] - Case 2: \( x - 2 = -\frac{48}{7} \) \[ x = 2 - \frac{48}{7} = \frac{14 - 48}{7} = -\frac{34}{7} \] 11. **Sum the possible values of \( x \)**: \[ \text{Sum} = \frac{62}{7} + \left(-\frac{34}{7}\right) = \frac{62 - 34}{7} = \frac{28}{7} = 4 \] ### Final Answer: The sum of the possible real values of \( x \) is \( \boxed{4} \).
Promotional Banner

Topper's Solved these Questions

  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Matching Type Problems|2 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos

Similar Questions

Explore conceptually related problems

For what value of x is the ninth term in the expansion of (3^(log_3 sqrt(25^(x-1) +7)) + 3^(-1/8 log_3 (5^(x-1) +1)))^10 is equal to 180

the value of x , for which the 6th term in the expansions of [2^(log_2) (sqrt(9^((x-1)+7)))+1/(2^(1/5)(log)_2(3^(x-1)+1))]^7i s84 , is equal to a. 4 b. 3 c. 2 d. 1

The value of x for which the sixth term in the expansion of [2^(log)2sqrt(9^(x-1)+7)+1/(2^(1/5)(log)_2(3^((x-1)+1)))]^7 is 84 is a. 4 b. 1or2 c. 0or1 d. 3

Find the number or real values of x satisfying the equation 9^(2log_(9)x)+4x+3=0 .

The largest value of x for which the fourth tem in the expansion (5^((2/5)(log)_5sqrt(4^(x)+44))+1/(5^(log_5) (2^((x-1)+7))^(1/3)))^8 is 336 is.

Find the sum and product of all possible values of x which makes the following statement true. log_(6)54+log_x16=log_sqrt2x-log_36(4/9) .

The set of real values of x satisfying the equation |x-1|^(log_3(x^2)-2log_x(9))=(x-1)^7

Number of integral values of x in the domain of function f (x)= sqrt(ln(|ln|x||)) + sqrt(7|x|-(|x|)^2-10) is equal to

Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt3)) (sqrt(x^2+1)+x)+log_((2-sqrt3)) (sqrt(x^2+1)-x)=3

Find the sum of the series 1-3x+5x^2-7x^3+ ton terms.