Home
Class 12
MATHS
The number of critical points of f (x)=...

The number of critical points of `f (x)= (int _(0) ^(x) (cos ^(2) t- ""^(3) sqrtt)dt)+3/4 x ^(4//3)-(x+1)/(2)` in ` (0, 6pi]` is:

A

10

B

8

C

6

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of critical points of the function \[ f(x) = \int_{0}^{x} \left( \cos^2 t - t^{\frac{1}{3}} \right) dt + \frac{3}{4} x^{\frac{4}{3}} - \frac{x + 1}{2} \] in the interval \( (0, 6\pi] \), we follow these steps: ### Step 1: Differentiate the Function To find the critical points, we first need to differentiate the function \( f(x) \). According to the Fundamental Theorem of Calculus, the derivative of an integral can be expressed as: \[ f'(x) = \frac{d}{dx} \left( \int_{0}^{x} g(t) dt \right) = g(x) \] where \( g(t) = \cos^2 t - t^{\frac{1}{3}} \). Thus, we have: \[ f'(x) = \cos^2 x - x^{\frac{1}{3}} + \frac{3}{4} \cdot \frac{4}{3} x^{\frac{1}{3}} - \frac{1}{2} \] ### Step 2: Simplify the Derivative Now, simplify \( f'(x) \): \[ f'(x) = \cos^2 x - x^{\frac{1}{3}} + x^{\frac{1}{3}} - \frac{1}{2} \] The \( -x^{\frac{1}{3}} \) and \( +x^{\frac{1}{3}} \) cancel each other out: \[ f'(x) = \cos^2 x - \frac{1}{2} \] ### Step 3: Set the Derivative to Zero To find the critical points, we set \( f'(x) = 0 \): \[ \cos^2 x - \frac{1}{2} = 0 \] This simplifies to: \[ \cos^2 x = \frac{1}{2} \] ### Step 4: Solve for \( x \) Taking the square root gives: \[ \cos x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] The solutions for \( \cos x = \frac{\sqrt{2}}{2} \) are: \[ x = \frac{\pi}{4} + 2k\pi \quad \text{and} \quad x = \frac{7\pi}{4} + 2k\pi \] The solutions for \( \cos x = -\frac{\sqrt{2}}{2} \) are: \[ x = \frac{3\pi}{4} + 2k\pi \quad \text{and} \quad x = \frac{5\pi}{4} + 2k\pi \] ### Step 5: Find Critical Points in the Interval \( (0, 6\pi] \) Now we need to find all the values of \( x \) in the interval \( (0, 6\pi] \): 1. For \( k = 0 \): - \( x = \frac{\pi}{4} \) - \( x = \frac{7\pi}{4} \) - \( x = \frac{3\pi}{4} \) - \( x = \frac{5\pi}{4} \) 2. For \( k = 1 \): - \( x = \frac{\pi}{4} + 2\pi = \frac{9\pi}{4} \) - \( x = \frac{7\pi}{4} + 2\pi = \frac{15\pi}{4} \) - \( x = \frac{3\pi}{4} + 2\pi = \frac{11\pi}{4} \) - \( x = \frac{5\pi}{4} + 2\pi = \frac{13\pi}{4} \) 3. For \( k = 2 \): - \( x = \frac{\pi}{4} + 4\pi = \frac{17\pi}{4} \) (not in the interval) - \( x = \frac{7\pi}{4} + 4\pi = \frac{23\pi}{4} \) (not in the interval) - \( x = \frac{3\pi}{4} + 4\pi = \frac{19\pi}{4} \) (not in the interval) - \( x = \frac{5\pi}{4} + 4\pi = \frac{21\pi}{4} \) (not in the interval) The valid critical points in \( (0, 6\pi] \) are: - \( \frac{\pi}{4} \) - \( \frac{3\pi}{4} \) - \( \frac{5\pi}{4} \) - \( \frac{7\pi}{4} \) - \( \frac{9\pi}{4} \) - \( \frac{11\pi}{4} \) - \( \frac{13\pi}{4} \) - \( \frac{15\pi}{4} \) ### Total Number of Critical Points Counting these gives us a total of **12 critical points** in the interval \( (0, 6\pi] \). ### Final Answer The number of critical points of \( f(x) \) in \( (0, 6\pi] \) is **12**. ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ANSWER IS/ARE CORRECT )|29 Videos
  • APPLICATION OF DERIVATIVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|15 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos

Similar Questions

Explore conceptually related problems

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

Let f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4)

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-APPLICATION OF DERIVATIVES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The number of critical points of f (x)= (int (0) ^(x) (cos ^(2) t- ""...

    Text Solution

    |

  2. A conical vessel is to be prepared out of a circular sheet of gold of ...

    Text Solution

    |

  3. On [1,e], then least and greatest vlaues of f (x) = x^(2)ln x are m a...

    Text Solution

    |

  4. If f (x)= (px)/(e ^(x)) - (x ^(2))/(2) + x is a decreasing function f...

    Text Solution

    |

  5. L e tf(x)={x e^(a x),xlt=0x+a x^2-x^3,x >0 where a is a positive cons...

    Text Solution

    |

  6. Find sum of all possible values of the real parameter 'b' if the diffe...

    Text Solution

    |

  7. Let 'theta' be the angle in radians between the curves (x ^(2))/(36) +...

    Text Solution

    |

  8. Let set of all possible values of lamda such that f (x)= e ^(2x) - (la...

    Text Solution

    |

  9. Let a,b,c and d be non-negative real number such that a ^(5)+b^(5) le ...

    Text Solution

    |

  10. There is a point (p,q) on the graph of f(x)=x^(2) and a point (r,s) on...

    Text Solution

    |

  11. If f(x)=max| 2 siny-x|, (where y in R), then find the minimum value o...

    Text Solution

    |

  12. Let f (x) = int (0)^(x) ((a -1) (t ^(2)+t+1)^(2) -(a+1)(t^(4)+t ^(2) +...

    Text Solution

    |

  13. The numbr of real roots of the equation x ^(2013)+ e ^(2014x) =0 is

    Text Solution

    |

  14. Let the maximum value of expression y= (x ^(4)-x ^(2))/(x ^(6) + 2x ^(...

    Text Solution

    |

  15. The least positive integral value of 'k' for which there exists at lea...

    Text Solution

    |

  16. The coordinates of a particle moving in a plane are given by x (t) = a...

    Text Solution

    |

  17. A tank contains 100 litres of fresh water. A solution containing 1 gm/...

    Text Solution

    |

  18. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  19. It is given that f (x) is defined on R satisfying f (1)=1 and for AA ...

    Text Solution

    |

  20. The number of normals to the curve 3y ^(3) =4x which passes through th...

    Text Solution

    |

  21. Find the number of real root (s) of the equation ae ^(x) =1+ x + (x ^(...

    Text Solution

    |