Home
Class 12
MATHS
Let f (x) = [{:(1-x,,, 0 le x le 1),(0,,...

Let `f (x) = [{:(1-x,,, 0 le x le 1),(0,,, 1 lt x le 2 and g (x) = int_(0)^(x) f (t)dt.),( (2-x)^(2),,, 2 lt x le 3):}`
Let the tangent to the curve `y = g( x)` at point P whose abscissa is `5/2` cuts x-axis in point Q.
Let the prependicular from point Q on x-axis meets the curve `y =g (x)` in point R .Find equation of tangent at to y=g(x) at P .Also the value of
`g (1) =`

A

(a) 0

B

(b)`1/2`

C

(c) 1

D

(d) 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the functions \( f(x) \) and \( g(x) \), then find the equation of the tangent line to \( y = g(x) \) at the point \( P \) where \( x = \frac{5}{2} \), and finally compute the value of \( g(1) \). ### Step 1: Define the function \( f(x) \) The function \( f(x) \) is defined piecewise as follows: - \( f(x) = 1 - x \) for \( 0 \leq x \leq 1 \) - \( f(x) = 0 \) for \( 1 < x \leq 2 \) - \( f(x) = (2 - x)^2 \) for \( 2 < x \leq 3 \) ### Step 2: Define the function \( g(x) \) The function \( g(x) \) is defined as the integral of \( f(t) \) from 0 to \( x \): \[ g(x) = \int_0^x f(t) \, dt \] We will compute \( g(x) \) for each interval. #### For \( 0 \leq x \leq 1 \): \[ g(x) = \int_0^x (1 - t) \, dt = \left[t - \frac{t^2}{2}\right]_0^x = x - \frac{x^2}{2} \] #### For \( 1 < x \leq 2 \): \[ g(x) = \int_0^1 (1 - t) \, dt + \int_1^x 0 \, dt \] \[ = \left[t - \frac{t^2}{2}\right]_0^1 + 0 = 1 - \frac{1}{2} = \frac{1}{2} \] #### For \( 2 < x \leq 3 \): \[ g(x) = \int_0^1 (1 - t) \, dt + \int_1^2 0 \, dt + \int_2^x (2 - t)^2 \, dt \] \[ = \frac{1}{2} + 0 + \int_2^x (2 - t)^2 \, dt \] Calculating the last integral: \[ \int (2 - t)^2 \, dt = \frac{(2 - t)^3}{3} \] Evaluating from 2 to \( x \): \[ = \frac{(2 - x)^3}{3} \quad \text{(since at } t=2, (2-2)^3 = 0\text{)} \] Thus, \[ g(x) = \frac{1}{2} - \frac{(2 - x)^3}{3} \] ### Step 3: Find \( g\left(\frac{5}{2}\right) \) Since \( \frac{5}{2} \) lies in the interval \( 2 < x \leq 3 \): \[ g\left(\frac{5}{2}\right) = \frac{1}{2} - \frac{(2 - \frac{5}{2})^3}{3} = \frac{1}{2} - \frac{(-\frac{1}{2})^3}{3} \] Calculating: \[ = \frac{1}{2} - \frac{-\frac{1}{8}}{3} = \frac{1}{2} + \frac{1}{24} = \frac{12}{24} + \frac{1}{24} = \frac{13}{24} \] ### Step 4: Find the slope of the tangent line at \( P \) To find the slope of the tangent line at \( P \) where \( x = \frac{5}{2} \), we need to differentiate \( g(x) \): \[ g'(x) = \frac{d}{dx}\left(\frac{1}{2} - \frac{(2 - x)^3}{3}\right) = \frac{(2 - x)^2}{3} \] Evaluating at \( x = \frac{5}{2} \): \[ g'\left(\frac{5}{2}\right) = \frac{(2 - \frac{5}{2})^2}{3} = \frac{(-\frac{1}{2})^2}{3} = \frac{\frac{1}{4}}{3} = \frac{1}{12} \] ### Step 5: Write the equation of the tangent line Using the point-slope form of the equation of a line: \[ y - y_1 = m(x - x_1) \] Where \( (x_1, y_1) = \left(\frac{5}{2}, \frac{13}{24}\right) \) and \( m = \frac{1}{12} \): \[ y - \frac{13}{24} = \frac{1}{12}\left(x - \frac{5}{2}\right) \] Multiplying through by 24 to eliminate the fraction: \[ 24y - 13 = 2(x - \frac{5}{2}) \] \[ 24y - 13 = 2x - 5 \] Rearranging gives: \[ 2x - 24y + 8 = 0 \quad \text{or} \quad 2x - 24y = -8 \] ### Step 6: Find \( g(1) \) For \( x = 1 \): \[ g(1) = 1 - \frac{1^2}{2} = 1 - \frac{1}{2} = \frac{1}{2} \] ### Final Answers - The equation of the tangent line at point \( P \) is \( 2x - 24y + 8 = 0 \). - The value of \( g(1) \) is \( \frac{1}{2} \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATHCING TYPE PROBLEMS)|6 Videos
  • APPLICATION OF DERIVATIVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • APPLICATION OF DERIVATIVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ANSWER IS/ARE CORRECT )|29 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof) (x).

f(x)={:{(1-x","" "0 le c le 1),(0","" "1 le x le 2" and "phi (x)=int_(0)^(x)f(t)" dt"."Then"),((2-x)^(2)","" "2 le x le 3):} for any x in [2,3],phi(x) equals

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x) = {{:(e ^(x),,"," 0 le x lt 1 ,, ""), (2- e^(x - 1),,"," 1 lt x le 2,, and g(x) = int_(0)^(x) f(t ) dt","),( x- e,,"," 2lt x le 3 ,, ""):} x in [ 1, 3 ] , then

If f(x)=[{:(sqrt(1-x), , , 0 le x le 1),((7x-6)^(-1) , , ,1 le x le 2):} then int_(0)^(2)f(x)dx equals

if f(x) = {[3x+4 , 0 le x le 2],[5x , 2 le x le 3]}, then evaluate int_(0)^(3) f(x) dx.

Consider the functions f(x)={(x+1",",x le 1),(2x+1",",1lt x le 2):} and g(x)={(x^(2)",", -1 le x lt2),(x+2",",2le x le 3):} The range of the function f(g(x)) is

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at: