Home
Class 12
MATHS
int (dx)/((1+sqrtx)^(8))=-(1)/(3(1+sqrtx...

`int (dx)/((1+sqrtx)^(8))=-(1)/(3(1+sqrtx)^(k_(1)))+ (2)/(7(1+sqrtx)^(k_(2)))+C,` then:

A

`K_(1)=5`

B

`k _(1)=6`

C

`k _(2)=7`

D

`k _(2)=8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(1 + \sqrt{x})^8} \] we will use substitution and integration techniques. ### Step 1: Substitution Let \( t = 1 + \sqrt{x} \). Then, we differentiate to find \( dx \): \[ \sqrt{x} = t - 1 \implies x = (t - 1)^2 \] Differentiating \( x \) with respect to \( t \): \[ dx = 2(t - 1) dt \] ### Step 2: Rewrite the Integral Now, substituting \( dx \) and \( \sqrt{x} \) into the integral: \[ I = \int \frac{2(t - 1) dt}{t^8} \] This can be simplified as: \[ I = 2 \int \left( \frac{t}{t^8} - \frac{1}{t^8} \right) dt = 2 \int \left( t^{-7} - t^{-8} \right) dt \] ### Step 3: Integrate Now we integrate term by term: \[ I = 2 \left( \int t^{-7} dt - \int t^{-8} dt \right) \] Using the formula \( \int t^n dt = \frac{t^{n+1}}{n+1} + C \): \[ \int t^{-7} dt = \frac{t^{-6}}{-6} = -\frac{1}{6} t^{-6} \] \[ \int t^{-8} dt = \frac{t^{-7}}{-7} = -\frac{1}{7} t^{-7} \] Thus, we have: \[ I = 2 \left( -\frac{1}{6} t^{-6} + \frac{1}{7} t^{-7} \right) + C \] \[ I = -\frac{1}{3} t^{-6} + \frac{2}{7} t^{-7} + C \] ### Step 4: Substitute Back Now substituting back \( t = 1 + \sqrt{x} \): \[ I = -\frac{1}{3 (1 + \sqrt{x})^6} + \frac{2}{7 (1 + \sqrt{x})^7} + C \] ### Step 5: Identify \( k_1 \) and \( k_2 \) From the final expression, we can see that: \[ k_1 = 6 \quad \text{and} \quad k_2 = 7 \] Thus, the values of \( k_1 \) and \( k_2 \) are: \[ k_1 = 6, \quad k_2 = 7 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int (1-x) sqrtx dx

int (1+x)^3/sqrtx dx

int(dx)/((1+sqrtx)^(2010))=2[(1)/(alpha(1+sqrtx)^(alpha))-(1)/(beta(1+sqrtx))^(beta)]+c where alpha, betagt0" then "alpha-beta is

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

int (1/sqrtx-sqrtx)dx

(d)/(dx)(sqrtx+(1)/(sqrtx))^2=

int ((2+sqrtx)dx )/((x+1+sqrtx)^(2)) is equal to:

int(1+sqrtx)/(1+x)dx

int_(1)^(2)(dx)/(sqrtx-sqrt(x-1))

Integrate: (a) (3)/(2)sqrt3 (b) (3)/(2sqrtx) (c ) sqrtx+(1)/(sqrtx)