Home
Class 12
MATHS
If int (-alpha) ^(alpha ) (e ^(x) + cos ...

If `int _(-alpha) ^(alpha ) (e ^(x) + cos x ln (x + sqrt(1+x ^(2))))dx gt (3)/(2),` then posible value of `alpha` can be:

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral and find the possible values of \( \alpha \) such that: \[ \int_{-\alpha}^{\alpha} \left( e^x + \cos x \ln(x + \sqrt{1+x^2}) \right) dx > \frac{3}{2} \] ### Step 1: Define the Integral Let: \[ I = \int_{-\alpha}^{\alpha} \left( e^x + \cos x \ln(x + \sqrt{1+x^2}) \right) dx \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = \int_{0}^{a} (f(x) + f(-x)) \, dx \] for an even function. ### Step 3: Analyze the Function We need to check if the function \( f(x) = e^x + \cos x \ln(x + \sqrt{1+x^2}) \) is even or odd. 1. **Evaluate \( f(-x) \)**: \[ f(-x) = e^{-x} + \cos(-x) \ln(-x + \sqrt{1+x^2}) = e^{-x} + \cos x \ln(-x + \sqrt{1+x^2}) \] 2. **Check if \( f(x) + f(-x) \) simplifies**: \[ f(x) + f(-x) = e^x + e^{-x} + \cos x \left( \ln(x + \sqrt{1+x^2}) + \ln(-x + \sqrt{1+x^2}) \right) \] The logarithmic terms can be simplified using the property of logarithms: \[ \ln(x + \sqrt{1+x^2}) + \ln(-x + \sqrt{1+x^2}) = \ln\left((x + \sqrt{1+x^2})(-x + \sqrt{1+x^2})\right) \] This simplifies to: \[ \ln(1) = 0 \] Hence: \[ f(x) + f(-x) = e^x + e^{-x} = 2 \cosh(x) \] ### Step 4: Calculate the Integral Thus, we can rewrite the integral: \[ I = \int_{-\alpha}^{\alpha} f(x) \, dx = \int_{0}^{\alpha} 2 \cosh(x) \, dx \] Calculating this integral: \[ I = 2 \left[ \sinh(x) \right]_{0}^{\alpha} = 2 \left( \sinh(\alpha) - \sinh(0) \right) = 2 \sinh(\alpha) \] ### Step 5: Set up the Inequality Now we have: \[ 2 \sinh(\alpha) > \frac{3}{2} \] Dividing both sides by 2: \[ \sinh(\alpha) > \frac{3}{4} \] ### Step 6: Solve for \( \alpha \) To find \( \alpha \), we take the inverse hyperbolic sine: \[ \alpha > \sinh^{-1}\left(\frac{3}{4}\right) \] ### Step 7: Calculate \( \sinh^{-1}\left(\frac{3}{4}\right) \) Using the formula for inverse hyperbolic sine: \[ \sinh^{-1}(x) = \ln(x + \sqrt{x^2 + 1}) \] Thus: \[ \sinh^{-1}\left(\frac{3}{4}\right) = \ln\left(\frac{3}{4} + \sqrt{\left(\frac{3}{4}\right)^2 + 1}\right) = \ln\left(\frac{3}{4} + \sqrt{\frac{9}{16} + 1}\right) = \ln\left(\frac{3}{4} + \sqrt{\frac{25}{16}}\right) = \ln\left(\frac{3}{4} + \frac{5}{4}\right) = \ln(2) \] ### Conclusion Therefore, the possible values of \( \alpha \) are: \[ \alpha > \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int sqrt(sin(x-alpha)/sin(x+alpha)) dx

If x cos alpha +y sin alpha = 4 is tangent to (x^(2))/(25) +(y^(2))/(9) =1 , then the value of alpha is

If int _0^1e^(x^2)(x-alpha)dx=0 , then

int _(alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

If alpha and beta are roots of equation (log_(3)x)^(2)-4(log_(3)x)+2=0 then The value of alpha beta is

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to

int(sin2x)/(sin(x-alpha)sin(x+alpha)) dx

If alpha and beta are the roots of the equation x^2+sqrt(alpha)x+beta=0 then the values of alpha and beta are -

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpha, beta ar the roots of the quadratic equation x ^(2) -(3+ 2 ^(sqrt(log _(2)3))-3 ^(sqrt(log _(3)2)))x-2 (3 ^(log _(3)2)-2^(log _(z)3))=0, then the value of alpha ^(2) + alpha beta +beta^2 is equal to :

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. int (dx)/((1+sqrtx)^(8))=-(1)/(3(1+sqrtx)^(k(1)))+ (2)/(7(1+sqrtx)^(k(...

    Text Solution

    |

  2. If int (-alpha) ^(alpha ) (e ^(x) + cos x ln (x + sqrt(1+x ^(2))))dx g...

    Text Solution

    |

  3. "I f"intsqrt(x/(a^3-x^3))dx=d/bsin^(- 1)((x^(3/2))/(a^(3/2)))+C (wher...

    Text Solution

    |

  4. Let int x sinx sec^3x dx = 1/2(x.f(x) - g(x)) + k, then

    Text Solution

    |

  5. If int (sin 3 theta + sin theta ) cos theta e ^(sin theta ) d theta = ...

    Text Solution

    |

  6. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  7. If f (theta ) = lim (x to oo) sum ( r =o) ^(n theta) (2r)/(n sqrt((3 t...

    Text Solution

    |

  8. If f (x+y) =f (x) f(y) for all x,y and f (0) ne 0, and F (x) =(f(x))/...

    Text Solution

    |

  9. Let J=int (-1) ^(2) (cot ^(-1) ""(1)/(x )+ cot ^(-1) x ) dx, K =int (-...

    Text Solution

    |

  10. Which of the following function (s) is/are even ?

    Text Solution

    |

  11. Let lim(x->oo) sqrt((x-cos^2x)/(x+sinx)) and I2 = lim(h->0^+) int(-1)^...

    Text Solution

    |

  12. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  13. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |

  14. The value of definite integral: int(-2014)^(2014)(dx)/(1+sin^(2015)x+s...

    Text Solution

    |

  15. Let L= underset(nrarr infty)(lim)int(a)^(infty)(n dx)/(1+n^(2)x^(2)), ...

    Text Solution

    |

  16. Let I =int (0)^(1 ) sqrt((1+sqrtx)/(1-sqrtx))dx and J = int (0)^(1 ) s...

    Text Solution

    |