Home
Class 12
MATHS
"I f"intsqrt(x/(a^3-x^3))dx=d/bsin^(- 1)...

`"I f"intsqrt(x/(a^3-x^3))dx=d/bsin^(- 1)((x^(3/2))/(a^(3/2)))+C` (where `b & d` are coprime integer) then `b + d` equals to.

A

`A=2/3`

B

`B=a ^(3//2)`

C

`A=1/3`

D

`B =a ^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\frac{x}{a^3 - x^3}} \, dx \) and express it in the form \( \frac{d}{b} \sin^{-1}\left(\frac{x^{3/2}}{a^{3/2}}\right) + C \), where \( b \) and \( d \) are coprime integers, we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sqrt{\frac{x}{a^3 - x^3}} \, dx \] We can rewrite the expression under the square root: \[ I = \int \frac{\sqrt{x}}{\sqrt{a^3 - x^3}} \, dx \] ### Step 2: Substitution Let \( t = x^{3/2} \). Then, we differentiate: \[ x = t^{2/3} \implies dx = \frac{2}{3} t^{-1/3} dt \] Substituting \( x \) and \( dx \) into the integral gives: \[ I = \int \frac{\sqrt{t^{2/3}}}{\sqrt{a^3 - (t^{2/3})^3}} \cdot \frac{2}{3} t^{-1/3} dt \] This simplifies to: \[ I = \int \frac{t^{1/3}}{\sqrt{a^3 - t^2}} \cdot \frac{2}{3} t^{-1/3} dt = \frac{2}{3} \int \frac{1}{\sqrt{a^3 - t^2}} dt \] ### Step 3: Integral of the Form Now, we recognize that: \[ \int \frac{1}{\sqrt{a^3 - t^2}} dt \] is of the form \( \int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + C \). ### Step 4: Apply the Formula Thus, we have: \[ I = \frac{2}{3} \sin^{-1}\left(\frac{t}{\sqrt{a^3}}\right) + C \] Substituting back \( t = x^{3/2} \): \[ I = \frac{2}{3} \sin^{-1}\left(\frac{x^{3/2}}{a^{3/2}}\right) + C \] ### Step 5: Compare with the Given Form According to the problem, we need to express this as: \[ I = \frac{d}{b} \sin^{-1}\left(\frac{x^{3/2}}{a^{3/2}}\right) + C \] From our result, we can see that \( d = 2 \) and \( b = 3 \). ### Step 6: Find \( b + d \) Now, since \( b \) and \( d \) are coprime integers: \[ b + d = 3 + 2 = 5 \] ### Final Answer Thus, the value of \( b + d \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If f(x)=ax+b , where a and b are integers, f(-1)=-5 and f(3)=3 then a and b are equal to

If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of integration then f(x) equals:

If int _(0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin (b), where a and b are positive integers. Find the value of (a+b).

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(3)) +d. then (where d is arbitrary constant)

If f(x)=|{:(x^(3),x^(4),3x^(2)),(1,-6,4),(p,p^(2),p^(3)):}| , where p is a constant, then (d^(3))/(dx^(3))(f(x)) , is

Consider f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1) ( where [.] denotes greatest integer function .) If domain of f(x) " is " [a,b) and the range of f(x) is {c,d}" then " a + b + (2d)/c is equal to ( where c lt d )

If range of f (x)= ((ln x) (ln x ^(2))+ln x ^(3)+3)/(ln ^(2) x+ln x ^(2)+2) can be expressed as [ (a)/(b),(c )/(d)] where a,b,c and d are prime numbers (not nacessarily distinct) then find the value of ((a+b+c+d))/(2).

If int(dx)/(3sqrt(sin^(11)x*cosx))=-(a(b+ctan^(2)x))/(d tan^(2)x(tanx)^(2//3))+k , then a+b+c+d equal to

int sin^(5//2)x cos^(3)x dx = 2 sin^(A//2)x[(1)/(B)-(1)/(C) sin^(2)x]+D , then the value of (A+B)-C is equal to ........ .

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. int (dx)/((1+sqrtx)^(8))=-(1)/(3(1+sqrtx)^(k(1)))+ (2)/(7(1+sqrtx)^(k(...

    Text Solution

    |

  2. If int (-alpha) ^(alpha ) (e ^(x) + cos x ln (x + sqrt(1+x ^(2))))dx g...

    Text Solution

    |

  3. "I f"intsqrt(x/(a^3-x^3))dx=d/bsin^(- 1)((x^(3/2))/(a^(3/2)))+C (wher...

    Text Solution

    |

  4. Let int x sinx sec^3x dx = 1/2(x.f(x) - g(x)) + k, then

    Text Solution

    |

  5. If int (sin 3 theta + sin theta ) cos theta e ^(sin theta ) d theta = ...

    Text Solution

    |

  6. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  7. If f (theta ) = lim (x to oo) sum ( r =o) ^(n theta) (2r)/(n sqrt((3 t...

    Text Solution

    |

  8. If f (x+y) =f (x) f(y) for all x,y and f (0) ne 0, and F (x) =(f(x))/...

    Text Solution

    |

  9. Let J=int (-1) ^(2) (cot ^(-1) ""(1)/(x )+ cot ^(-1) x ) dx, K =int (-...

    Text Solution

    |

  10. Which of the following function (s) is/are even ?

    Text Solution

    |

  11. Let lim(x->oo) sqrt((x-cos^2x)/(x+sinx)) and I2 = lim(h->0^+) int(-1)^...

    Text Solution

    |

  12. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  13. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |

  14. The value of definite integral: int(-2014)^(2014)(dx)/(1+sin^(2015)x+s...

    Text Solution

    |

  15. Let L= underset(nrarr infty)(lim)int(a)^(infty)(n dx)/(1+n^(2)x^(2)), ...

    Text Solution

    |

  16. Let I =int (0)^(1 ) sqrt((1+sqrtx)/(1-sqrtx))dx and J = int (0)^(1 ) s...

    Text Solution

    |