Home
Class 12
MATHS
Let lim(x->oo) sqrt((x-cos^2x)/(x+sinx))...

Let `lim_(x->oo) sqrt((x-cos^2x)/(x+sinx)) and I_2 = lim_(h->0^+) int_(-1)^1 hdx/(h^2+x^2)`. Then

A

Both `l _(1) and l _(2)` are less than 22/7

B

One of the two limits is rational and other irrational

C

`l _(2) gt l _(1)`

D

`l _(2)` is greater than 3 times of `l _(1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate two limits: 1. \( I_1 = \lim_{x \to \infty} \sqrt{\frac{x - \cos^2 x}{x + \sin x}} \) 2. \( I_2 = \lim_{h \to 0^+} \int_{-1}^{1} \frac{h \, dx}{h^2 + x^2} \) ### Step 1: Evaluate \( I_1 \) We start with the limit: \[ I_1 = \lim_{x \to \infty} \sqrt{\frac{x - \cos^2 x}{x + \sin x}} \] **Hint:** Factor out \( x \) from both the numerator and the denominator. \[ I_1 = \lim_{x \to \infty} \sqrt{\frac{x(1 - \frac{\cos^2 x}{x})}{x(1 + \frac{\sin x}{x})}} = \lim_{x \to \infty} \sqrt{\frac{1 - \frac{\cos^2 x}{x}}{1 + \frac{\sin x}{x}}} \] **Hint:** As \( x \) approaches infinity, \( \frac{\cos^2 x}{x} \) and \( \frac{\sin x}{x} \) both approach 0. \[ I_1 = \sqrt{\frac{1 - 0}{1 + 0}} = \sqrt{1} = 1 \] ### Step 2: Evaluate \( I_2 \) Next, we evaluate the second limit: \[ I_2 = \lim_{h \to 0^+} \int_{-1}^{1} \frac{h \, dx}{h^2 + x^2} \] **Hint:** Recognize that the integral can be simplified by factoring out \( h \). \[ I_2 = \lim_{h \to 0^+} h \int_{-1}^{1} \frac{dx}{h^2 + x^2} \] **Hint:** The integral \( \int \frac{dx}{h^2 + x^2} \) can be solved using the formula \( \int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C \). \[ \int_{-1}^{1} \frac{dx}{h^2 + x^2} = \left[ \frac{1}{h} \tan^{-1}\left(\frac{x}{h}\right) \right]_{-1}^{1} \] **Hint:** Evaluate the limits of the arctangent function. \[ = \frac{1}{h} \left( \tan^{-1}\left(\frac{1}{h}\right) - \tan^{-1}\left(\frac{-1}{h}\right) \right) \] **Hint:** Use the property of the arctangent function, \( \tan^{-1}(-x) = -\tan^{-1}(x) \). \[ = \frac{1}{h} \left( \tan^{-1}\left(\frac{1}{h}\right) + \tan^{-1}\left(\frac{1}{h}\right) \right) = \frac{2}{h} \tan^{-1}\left(\frac{1}{h}\right) \] **Hint:** As \( h \to 0^+ \), \( \tan^{-1}\left(\frac{1}{h}\right) \) approaches \( \frac{\pi}{2} \). \[ I_2 = \lim_{h \to 0^+} h \cdot \frac{2}{h} \cdot \frac{\pi}{2} = \lim_{h \to 0^+} \pi = \pi \] ### Conclusion Now we have: - \( I_1 = 1 \) - \( I_2 = \pi \) ### Final Answer We can compare \( I_1 \) and \( I_2 \): - \( I_1 < \frac{22}{7} \) (since \( \pi \approx 3.14 \)) - \( I_2 = \pi \) (which is irrational) - \( I_2 > 3 \times I_1 \) (since \( \pi > 3 \))
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo) (x-sqrt(x^2+x))

8. lim_(x->oo)(sqrt(x^2+x)-x)

lim_(x->2)(sqrt(x-1)-1)/(x-2)

lim_(x->oo)(x^2 - sinx)/(x^2-2)

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

lim_(x rarr oo)(sqrt(x^(2)+x)-x)

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

Evaluate lim_(xto0) (1-cos2x)/x^(2)

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. int (dx)/((1+sqrtx)^(8))=-(1)/(3(1+sqrtx)^(k(1)))+ (2)/(7(1+sqrtx)^(k(...

    Text Solution

    |

  2. If int (-alpha) ^(alpha ) (e ^(x) + cos x ln (x + sqrt(1+x ^(2))))dx g...

    Text Solution

    |

  3. "I f"intsqrt(x/(a^3-x^3))dx=d/bsin^(- 1)((x^(3/2))/(a^(3/2)))+C (wher...

    Text Solution

    |

  4. Let int x sinx sec^3x dx = 1/2(x.f(x) - g(x)) + k, then

    Text Solution

    |

  5. If int (sin 3 theta + sin theta ) cos theta e ^(sin theta ) d theta = ...

    Text Solution

    |

  6. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  7. If f (theta ) = lim (x to oo) sum ( r =o) ^(n theta) (2r)/(n sqrt((3 t...

    Text Solution

    |

  8. If f (x+y) =f (x) f(y) for all x,y and f (0) ne 0, and F (x) =(f(x))/...

    Text Solution

    |

  9. Let J=int (-1) ^(2) (cot ^(-1) ""(1)/(x )+ cot ^(-1) x ) dx, K =int (-...

    Text Solution

    |

  10. Which of the following function (s) is/are even ?

    Text Solution

    |

  11. Let lim(x->oo) sqrt((x-cos^2x)/(x+sinx)) and I2 = lim(h->0^+) int(-1)^...

    Text Solution

    |

  12. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  13. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |

  14. The value of definite integral: int(-2014)^(2014)(dx)/(1+sin^(2015)x+s...

    Text Solution

    |

  15. Let L= underset(nrarr infty)(lim)int(a)^(infty)(n dx)/(1+n^(2)x^(2)), ...

    Text Solution

    |

  16. Let I =int (0)^(1 ) sqrt((1+sqrtx)/(1-sqrtx))dx and J = int (0)^(1 ) s...

    Text Solution

    |