Home
Class 12
MATHS
If int (dx)/(1- sin ^(4)x )= a tan x +b ...

If `int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, ` then:

A

`a =1/2`

B

`b =sqrt2`

C

`c=sqrt2`

D

`b =(1)/(2sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{1 - \sin^4 x} \] we can start by rewriting the denominator. Notice that \(\sin^4 x\) can be expressed as \((\sin^2 x)^2\). Thus, we can rewrite \(1 - \sin^4 x\) as: \[ 1 - \sin^4 x = 1 - (\sin^2 x)^2 = (1 - \sin^2 x)(1 + \sin^2 x) \] Using the identity \(1 - \sin^2 x = \cos^2 x\), we have: \[ 1 - \sin^4 x = \cos^2 x (1 + \sin^2 x) \] Now substituting this back into the integral, we get: \[ I = \int \frac{dx}{\cos^2 x (1 + \sin^2 x)} \] Next, we can separate the integral: \[ I = \int \frac{1}{\cos^2 x} \cdot \frac{1}{1 + \sin^2 x} \, dx \] This can be rewritten as: \[ I = \int \sec^2 x \cdot \frac{1}{1 + \sin^2 x} \, dx \] Now, we can use the substitution \(u = \tan x\), which gives us \(du = \sec^2 x \, dx\). Therefore, we can rewrite the integral in terms of \(u\): \[ I = \int \frac{1}{1 + \sin^2 x} \, du \] Next, we need to express \(\sin^2 x\) in terms of \(u\). We know that: \[ \sin^2 x = \frac{u^2}{1 + u^2} \] Substituting this into the integral gives: \[ I = \int \frac{1}{1 + \frac{u^2}{1 + u^2}} \, du = \int \frac{1 + u^2}{1 + u^2 + u^2} \, du = \int \frac{1 + u^2}{1 + 2u^2} \, du \] Now, we can separate this into two integrals: \[ I = \int \frac{1}{1 + 2u^2} \, du + \int \frac{u^2}{1 + 2u^2} \, du \] The first integral can be solved using the formula for the integral of \(\frac{1}{a^2 + x^2}\): \[ \int \frac{1}{1 + 2u^2} \, du = \frac{1}{\sqrt{2}} \tan^{-1} \left( \frac{u}{\sqrt{2}} \right) + C \] For the second integral, we can use the substitution \(v = 1 + 2u^2\), which gives us: \[ \int \frac{u^2}{1 + 2u^2} \, du = \frac{1}{2} \int \frac{v - 1}{v} \, dv = \frac{1}{2} \left( v - \ln |v| \right) + C \] After substituting back for \(u\) and combining the results, we can express \(I\) in the form: \[ I = a \tan x + b \tan^{-1}(c \tan x) + D \] By comparing coefficients, we find: - \(a = \frac{1}{2}\) - \(b = \frac{1}{2\sqrt{2}}\) - \(c = \sqrt{2}\) Thus, the final result is: \[ I = \frac{1}{2} \tan x + \frac{1}{2\sqrt{2}} \tan^{-1}(\sqrt{2} \tan x) + D \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|14 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int tan^(4)x dx = A tan^(3) x+ B tan x + f(x) , then

If int (dx)/(5+4 cos x) = k tan^(-1) (m tan ((x)/(2))) + C then :

int " x tan"^(-1) " x dx "

If int ( dx )/(5 + 4 sin x) = A tan^(-1) ( B tan ((x)/(2)) + (4)/(3)) + C , then :

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

If int 1/(1-sin^4x)dx=1/(asqrtb)+tan^(- 1)(sqrt(a)tanx)+1/btanx+C then a/b is equal to

int _(0)^(1) (tan ^(-1)x)/(x ) dx =

If int(1)/((x^(2)+1)(x^(2)+4))dx=Atan^(-1)x+B" tan"^(-1)(x)/(2)+C , then

int(secx- tan x)/(sec x+ tan x) dx

Evaluate: int tan ^(-1) sqrt x dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. int (dx)/((1+sqrtx)^(8))=-(1)/(3(1+sqrtx)^(k(1)))+ (2)/(7(1+sqrtx)^(k(...

    Text Solution

    |

  2. If int (-alpha) ^(alpha ) (e ^(x) + cos x ln (x + sqrt(1+x ^(2))))dx g...

    Text Solution

    |

  3. "I f"intsqrt(x/(a^3-x^3))dx=d/bsin^(- 1)((x^(3/2))/(a^(3/2)))+C (wher...

    Text Solution

    |

  4. Let int x sinx sec^3x dx = 1/2(x.f(x) - g(x)) + k, then

    Text Solution

    |

  5. If int (sin 3 theta + sin theta ) cos theta e ^(sin theta ) d theta = ...

    Text Solution

    |

  6. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  7. If f (theta ) = lim (x to oo) sum ( r =o) ^(n theta) (2r)/(n sqrt((3 t...

    Text Solution

    |

  8. If f (x+y) =f (x) f(y) for all x,y and f (0) ne 0, and F (x) =(f(x))/...

    Text Solution

    |

  9. Let J=int (-1) ^(2) (cot ^(-1) ""(1)/(x )+ cot ^(-1) x ) dx, K =int (-...

    Text Solution

    |

  10. Which of the following function (s) is/are even ?

    Text Solution

    |

  11. Let lim(x->oo) sqrt((x-cos^2x)/(x+sinx)) and I2 = lim(h->0^+) int(-1)^...

    Text Solution

    |

  12. For a gt 0,if I= int sqrt((x)/(a ^(3) -x ^(3)))dx =A sin ^(-1) ((x ^(3...

    Text Solution

    |

  13. If int (dx)/(1- sin ^(4)x )= a tan x +b tan ^(-1) (c tan x )+ D, then...

    Text Solution

    |

  14. The value of definite integral: int(-2014)^(2014)(dx)/(1+sin^(2015)x+s...

    Text Solution

    |

  15. Let L= underset(nrarr infty)(lim)int(a)^(infty)(n dx)/(1+n^(2)x^(2)), ...

    Text Solution

    |

  16. Let I =int (0)^(1 ) sqrt((1+sqrtx)/(1-sqrtx))dx and J = int (0)^(1 ) s...

    Text Solution

    |