Home
Class 12
MATHS
Let f (x) = x cos x, x in [(3pi)/(2), 2p...

Let `f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) ` be its inverse. If `int _(0)^(2pi)g (x) dx = api ^(2) + beta pi+ gamma,` where ` alpha, beta and gamma in R,` then find the value of `2 (alpha + beta+ gamma).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning provided in the video transcript. ### Step 1: Define the Functions Let \( f(x) = x \cos x \) for \( x \in \left[\frac{3\pi}{2}, 2\pi\right] \). We need to find the integral of its inverse function \( g(x) \), which is defined as \( g(x) = f^{-1}(x) \). ### Step 2: Determine the Limits of Integration First, we evaluate \( f(x) \) at the endpoints of the interval: - \( f\left(\frac{3\pi}{2}\right) = \frac{3\pi}{2} \cos\left(\frac{3\pi}{2}\right) = \frac{3\pi}{2} \cdot 0 = 0 \) - \( f(2\pi) = 2\pi \cos(2\pi) = 2\pi \cdot 1 = 2\pi \) Thus, \( f(x) \) maps \( \left[\frac{3\pi}{2}, 2\pi\right] \) to \( [0, 2\pi] \). ### Step 3: Change of Variables in the Integral We need to evaluate the integral: \[ \int_0^{2\pi} g(x) \, dx \] Using the property of inverse functions, we can change the variable: Let \( x = f(t) \), then \( dx = f'(t) dt \). The limits change accordingly: - When \( x = 0 \), \( t = \frac{3\pi}{2} \) - When \( x = 2\pi \), \( t = 2\pi \) Thus, we have: \[ \int_0^{2\pi} g(x) \, dx = \int_{\frac{3\pi}{2}}^{2\pi} t f'(t) \, dt \] ### Step 4: Compute the Derivative Next, we compute the derivative \( f'(x) \): \[ f'(x) = \cos x - x \sin x \] ### Step 5: Substitute into the Integral Now substituting \( f'(t) \) into the integral: \[ \int_{\frac{3\pi}{2}}^{2\pi} t (\cos t - t \sin t) \, dt \] This can be separated into two integrals: \[ \int_{\frac{3\pi}{2}}^{2\pi} t \cos t \, dt - \int_{\frac{3\pi}{2}}^{2\pi} t^2 \sin t \, dt \] ### Step 6: Evaluate the Integrals 1. **First Integral**: \( \int t \cos t \, dt \) - Using integration by parts, let \( u = t \) and \( dv = \cos t \, dt \): \[ \int t \cos t \, dt = t \sin t - \int \sin t \, dt = t \sin t + \cos t \] Evaluating from \( \frac{3\pi}{2} \) to \( 2\pi \): \[ \left[ t \sin t + \cos t \right]_{\frac{3\pi}{2}}^{2\pi} = \left[ 2\pi \cdot 0 + 1 \right] - \left[ \frac{3\pi}{2} \cdot (-1) + 0 \right] = 1 + \frac{3\pi}{2} \] 2. **Second Integral**: \( \int t^2 \sin t \, dt \) - Using integration by parts again, let \( u = t^2 \) and \( dv = \sin t \, dt \): \[ \int t^2 \sin t \, dt = -t^2 \cos t + 2 \int t \cos t \, dt \] Substitute the result from the first integral: \[ = -t^2 \cos t + 2 \left( t \sin t + \cos t \right) \] Evaluating this from \( \frac{3\pi}{2} \) to \( 2\pi \): \[ \text{Evaluate at } 2\pi: -4\pi^2 \cdot 1 + 2(2\pi \cdot 0 + 1) = -4\pi^2 + 2 \] \[ \text{Evaluate at } \frac{3\pi}{2}: -\frac{9\pi^2}{4} \cdot 0 + 2\left(\frac{3\pi}{2} \cdot (-1) + 0\right) = -3\pi \] Thus, the second integral evaluates to: \[ \left(-4\pi^2 + 2\right) - \left(-3\pi\right) = -4\pi^2 + 2 + 3\pi \] ### Step 7: Combine Results Combining both integrals: \[ I = \left(1 + \frac{3\pi}{2}\right) - \left(-4\pi^2 + 2 + 3\pi\right) \] Simplifying gives: \[ I = 4\pi^2 - \frac{3\pi}{2} - 1 \] ### Step 8: Compare with Given Expression We know: \[ I = \alpha \pi^2 + \beta \pi + \gamma \] From our result: - \( \alpha = 4 \) - \( \beta = -\frac{3}{2} \) - \( \gamma = -1 \) ### Step 9: Calculate \( 2(\alpha + \beta + \gamma) \) Now we calculate: \[ \alpha + \beta + \gamma = 4 - \frac{3}{2} - 1 = 4 - 1.5 - 1 = 1.5 \] Thus, \[ 2(\alpha + \beta + \gamma) = 2 \cdot 1.5 = 3 \] ### Final Answer The value of \( 2(\alpha + \beta + \gamma) \) is \( \boxed{3} \).
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta gamma are zeroes of cubic polynomial x^(3)+5x-2 , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

If roots of x ^(3) +2x ^(2) +1=0 are alpha, beta and gamma, then the vlaue of (alpha beta)^(3) + (beta gamma )^(3) + (alpha gamma )^(3) , is :

If alpha , beta , gamma are the roots of x^3 + px^2+qx -r=0 then alpha^2 + beta^2 + gamma^2 =

If alpha,beta,gamma are the roots of 4x^3-6x^2+7x+3=0 then find the value of alpha beta +beta gamma+gamma alpha .

If alpha , beta , gamma are the roots of x^3 +2x^2 +3x +8=0 then (3-alpha )(3 - beta) (3-gamma) =

If 2x^(3) + 3x^(2) + 5x +6=0 has roots alpha, beta, gamma then find alpha + beta + gamma, alphabeta + betagamma + gammaalpha and alpha beta gamma

If alpha,beta gamma are the zeroes of polynomial f(x) =(x-1)(x^(2)+x+3) , then find the value of alpha^(3)+beta^(3)+gamma^(3) .

The minimum value of the expression sin alpha + sin beta+ sin gamma , where alpha,beta,gamma are real numbers satisfying alpha+beta+gamma=pi is

If alpha , beta , gamma are the roots of x^3 +px^2 +qx +r=0 then find sum alpha^2 beta + sum alpha beta ^2

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k (1)) ( sqrt(1...

    Text Solution

    |

  2. If int (0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then fi...

    Text Solution

    |

  3. Let f (x) = x cos x, x in [(3pi)/(2), 2pi] and g (x) be its inverse. ...

    Text Solution

    |

  4. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  5. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  6. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  7. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  8. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  9. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  10. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  11. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  12. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  13. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  14. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  15. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  16. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  17. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  18. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  19. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  20. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |