Home
Class 12
MATHS
The value of int (tan x )/(tan ^(2) x + ...

The value of `int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C` Then the value of A is:

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\tan x}{\tan^2 x + \tan x + 1} \, dx \) and find the value of \( A \) such that the result matches the given expression, we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\tan x}{\tan^2 x + \tan x + 1} \, dx \] To simplify the denominator, we can rewrite it by adding and subtracting 1: \[ \tan^2 x + \tan x + 1 = \tan^2 x + \tan x + 1 - 1 + 1 = (\tan^2 x + \tan x + 1) + 1 - 1 \] This allows us to express the integral in a more manageable form. ### Step 2: Split the Integral Now we can express the integral as: \[ I = \int \left( \frac{\tan x + 1 - 1}{\tan^2 x + \tan x + 1} \right) \, dx \] This can be split into two parts: \[ I = \int \frac{\tan x + 1}{\tan^2 x + \tan x + 1} \, dx - \int \frac{1}{\tan^2 x + \tan x + 1} \, dx \] ### Step 3: Substitution Let \( t = \tan x \). Then, \( dt = \sec^2 x \, dx \) or \( dx = \frac{dt}{\sec^2 x} = \frac{dt}{1 + t^2} \). ### Step 4: Change of Variables Substituting \( t \) into the integral: \[ I = \int \frac{t}{t^2 + t + 1} \cdot \frac{dt}{1 + t^2} \] This simplifies to: \[ I = \int \frac{t}{(t^2 + t + 1)(1 + t^2)} \, dt \] ### Step 5: Further Simplification We can simplify the denominator: \[ t^2 + t + 1 = (t + \frac{1}{2})^2 + \frac{3}{4} \] This leads us to a form suitable for integration. ### Step 6: Integration Using the standard integral formula: \[ \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \] we can integrate the expression. ### Step 7: Combine Results After performing the integration and simplifying, we find: \[ I = x - \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{2 \tan x + 1}{\sqrt{3}} \right) + C \] ### Step 8: Compare with Given Expression We compare this result with the given expression: \[ x - \frac{2}{\sqrt{A}} \tan^{-1} \left( \frac{2 \tan x + 1}{\sqrt{A}} \right) + C \] From this comparison, we can see that: \[ \frac{2}{\sqrt{3}} = \frac{2}{\sqrt{A}} \] Squaring both sides gives: \[ 3 = A \] ### Final Answer Thus, the value of \( A \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int (1-tan^2x)/(1+tan^2x) dx

The value of int {1+tan x*tan (x + A)}\ dx is

Evaluate int tan x tan(x+1)dx .

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx

intsqrt(1+2 tan x (tan x + sec x ) ) dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx

Evaluate: int(tan^(-1)x)/(1+x^2)dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

If int tan^(2) kx dx= (tan 3x)/(3)-x + C , find the value of k

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If int (x ^(6) +x ^(4)+x^(2)) sqrt(2x ^(4) +3x ^(2)+6) dx = ((ax ^(6) ...

    Text Solution

    |

  2. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  3. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  4. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  5. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  6. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  7. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  8. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  9. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  10. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  11. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  12. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  13. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  14. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  15. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  16. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  17. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  18. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  19. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  20. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |