Home
Class 12
MATHS
Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2...

Let `int _(0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = (lamda)/(mu)`
where `lamda and mu` are relatively prime positive integers. Find unit digit of `mu`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^1 \frac{4x^3(1 + (x^4)^{2010})}{(1 + x^4)^{2012}} \, dx \] we will use a substitution method. Let's follow the steps: ### Step 1: Substitution Let \( t = x^4 \). Then, differentiating both sides gives us: \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] Now, we also need to change the limits of integration. When \( x = 0 \), \( t = 0^4 = 0 \). When \( x = 1 \), \( t = 1^4 = 1 \). ### Step 2: Change of Variables Substituting \( t \) into the integral, we have: \[ I = \int_0^1 \frac{4x^3(1 + t^{2010})}{(1 + t)^{2012}} \cdot \frac{dt}{4x^3} \] The \( 4x^3 \) terms cancel out: \[ I = \int_0^1 \frac{1 + t^{2010}}{(1 + t)^{2012}} \, dt \] ### Step 3: Split the Integral We can split the integral into two parts: \[ I = \int_0^1 \frac{1}{(1 + t)^{2012}} \, dt + \int_0^1 \frac{t^{2010}}{(1 + t)^{2012}} \, dt \] ### Step 4: Evaluate the First Integral The first integral can be evaluated using the formula for the beta function or directly: \[ \int_0^1 (1 + t)^{-n} \, dt = \frac{1}{n-1} \text{ for } n > 1 \] Here, \( n = 2012 \): \[ \int_0^1 \frac{1}{(1 + t)^{2012}} \, dt = \frac{1}{2011} \] ### Step 5: Evaluate the Second Integral For the second integral, we can use integration by parts or recognize it as a beta function: \[ \int_0^1 \frac{t^{2010}}{(1 + t)^{2012}} \, dt = B(2011, 1) = \frac{\Gamma(2011)\Gamma(1)}{\Gamma(2012)} = \frac{2010!}{2011!} = \frac{1}{2011} \] ### Step 6: Combine the Results Now, we can combine both integrals: \[ I = \frac{1}{2011} + \frac{1}{2011} = \frac{2}{2011} \] ### Step 7: Express in Terms of Lambda and Mu We have \( I = \frac{\lambda}{\mu} \) where \( \lambda = 2 \) and \( \mu = 2011 \). Since 2 and 2011 are relatively prime, we can conclude: \[ \lambda = 2, \quad \mu = 2011 \] ### Step 8: Find the Unit Digit of Mu The unit digit of \( \mu = 2011 \) is: \[ \text{Unit digit of } 2011 = 1 \] ### Final Answer Thus, the unit digit of \( \mu \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (x)/(1-x)^(3//4)dx=

Evaluate int_(0)^(1)(1)/(3+4x)d x

int (4x^(2) +x+1)/(x^(3) -1) dx=?

Let f (x) =x ^(2) +2x -t ^(2) and f(x)=0 has two root alpha (t ) and beta (t) (alpha lt beta) where t is a real parameter. Let I (t)=int _(alpha ) ^(beta)f (x) dx. If the maximum value of I (t) be lamda and | lamda| =p/q where p and q are relatively prime positive integers. Find the product (pq).

If int _(0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin (b), where a and b are positive integers. Find the value of (a+b).

Evaluate :- int_(0)^(1)(3x^(2)+4)dx

If int 2/(2-x)^2 ((2-x)/(2+x))^(1//3)\ dx = lambda ((2+x)/(2-x))^mu + c where lambda and mu are rational number in its simplest form then (lambda+1/mu) is equal to

Find int((x^4-x)^(1/4))/(x^5)dx

Evaluate : int(dx)/(x^(2)(x^(4) + 1)^((3)/(4)))

Find int_0^1(4x^3+3x^2-2x+1)dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If the value of the definite integral int ^(-1) ^(1) cos ^(-1) ((1)/(s...

    Text Solution

    |

  2. The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan...

    Text Solution

    |

  3. Let int (0)^(1) (4x ^(3) (1+(x ^(4)) ^(2010)))/((1+x^(4))^(2012))dx = ...

    Text Solution

    |

  4. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  5. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  6. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  7. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  8. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  9. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  10. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  11. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  12. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  13. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  14. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  15. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  16. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  17. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  18. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  19. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  20. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |