Home
Class 12
MATHS
Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)...

Let `I = int _(0) ^(pi) x ^(6) (pi-x) ^(8)dx,` then `(pi ^(15))/((""^(15) C _(9))I )=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} x^6 (\pi - x)^8 \, dx \) and find the value of \( \frac{\pi^{15}}{\binom{15}{9} I} \), we will use the integration by parts method repeatedly. ### Step 1: Set up the integral We start with the integral: \[ I = \int_0^{\pi} x^6 (\pi - x)^8 \, dx \] ### Step 2: Use integration by parts Let: - \( u = x^6 \) → \( du = 6x^5 \, dx \) - \( dv = (\pi - x)^8 \, dx \) → \( v = -\frac{(\pi - x)^9}{9} \) Using integration by parts: \[ I = \left[ -\frac{x^6 (\pi - x)^9}{9} \right]_0^{\pi} + \frac{1}{9} \int_0^{\pi} 6x^5 (\pi - x)^9 \, dx \] ### Step 3: Evaluate the boundary terms Evaluating the boundary terms: \[ \left[ -\frac{x^6 (\pi - x)^9}{9} \right]_0^{\pi} = -\frac{\pi^6 \cdot 0^9}{9} + \frac{0^6 \cdot \pi^9}{9} = 0 \] Thus, we have: \[ I = \frac{6}{9} \int_0^{\pi} x^5 (\pi - x)^9 \, dx = \frac{2}{3} \int_0^{\pi} x^5 (\pi - x)^9 \, dx \] ### Step 4: Repeat integration by parts Now, we apply integration by parts again: Let: - \( u = x^5 \) → \( du = 5x^4 \, dx \) - \( dv = (\pi - x)^9 \, dx \) → \( v = -\frac{(\pi - x)^{10}}{10} \) Then: \[ \int_0^{\pi} x^5 (\pi - x)^9 \, dx = \left[ -\frac{x^5 (\pi - x)^{10}}{10} \right]_0^{\pi} + \frac{1}{10} \int_0^{\pi} 5x^4 (\pi - x)^{10} \, dx \] ### Step 5: Evaluate the boundary terms again Evaluating the boundary terms: \[ \left[ -\frac{x^5 (\pi - x)^{10}}{10} \right]_0^{\pi} = 0 \] Thus, we have: \[ \int_0^{\pi} x^5 (\pi - x)^9 \, dx = \frac{1}{10} \int_0^{\pi} 5x^4 (\pi - x)^{10} \, dx = \frac{1}{2} \int_0^{\pi} x^4 (\pi - x)^{10} \, dx \] ### Step 6: Continue this process Continuing this process, we will eventually find that: \[ I = \frac{6!}{9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14} \int_0^{\pi} (\pi - x)^{14} \, dx \] ### Step 7: Evaluate the final integral The integral \( \int_0^{\pi} (\pi - x)^{14} \, dx \) can be evaluated as: \[ \int_0^{\pi} (\pi - x)^{14} \, dx = \int_0^{\pi} u^{14} \, du = \frac{\pi^{15}}{15} \] ### Step 8: Substitute back to find \( I \) Substituting this back into our expression for \( I \): \[ I = \frac{6!}{9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14} \cdot \frac{\pi^{15}}{15} \] ### Step 9: Calculate \( \frac{\pi^{15}}{\binom{15}{9} I} \) Now, we need to compute: \[ \frac{\pi^{15}}{\binom{15}{9} I} = \frac{\pi^{15}}{\frac{6!}{9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14} \cdot \frac{\pi^{15}}{15}} = \frac{15 \cdot 9 \cdot 10 \cdot 11 \cdot 12 \cdot 13 \cdot 14}{6! \cdot \binom{15}{9}} \] ### Step 10: Simplify the expression Using \( \binom{15}{9} = \frac{15!}{9! \cdot 6!} \): \[ \frac{\pi^{15}}{\binom{15}{9} I} = 9 \] ### Final Answer Thus, the required answer is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

If I=int_(0)^(1) (1)/(1+x^(pi//2))dx then

If int_(0)^(a) (1)/(1+4x^(2)) dx = pi/8 , then a=

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

int_(0)^(pi//6) cos x cos 3x dx

int_(0)^(a)(dx)/(4+x^(2))=(pi)/(8) , find a

int_(0)^(pi//6) sqrt(1-sin 2x) dx

If I=int_0^(1) (1)/(1+x^(pi//2))dx , then\

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  2. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  3. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  4. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  5. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |