Home
Class 12
MATHS
Let I(n) = int (0)^(pi) (sin (n + (1)/(2...

Let `I_(n) = int _(0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx` where `n in N ` U ` {0}. `If ` l _(1)^(2)+l _(2)^(2) +l_(3)^(2)+ ……. + l _(20)^(2) =mpi^(2),` then find the largest prime factor of m.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the integral \( I_n = \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\left(\frac{x}{2}\right)} \, dx \) for \( n \in \mathbb{N} \cup \{0\} \) and find the largest prime factor of \( m \) where \( l_1^2 + l_2^2 + l_3^2 + \ldots + l_{20}^2 = m\pi^2 \). ### Step 1: Establish the integral \( I_n \) We start with the integral: \[ I_n = \int_0^{\pi} \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\left(\frac{x}{2}\right)} \, dx \] ### Step 2: Use the property of the integral We can use the property of the integral for \( I_{n+1} \): \[ I_{n+1} = \int_0^{\pi} \frac{\sin\left(n + \frac{3}{2}\right)x}{\sin\left(\frac{x}{2}\right)} \, dx \] ### Step 3: Establish a relationship between \( I_n \) and \( I_{n+1} \) Subtracting \( I_n \) from \( I_{n+1} \): \[ I_{n+1} - I_n = \int_0^{\pi} \left( \frac{\sin\left(n + \frac{3}{2}\right)x - \sin\left(n + \frac{1}{2}\right)x}{\sin\left(\frac{x}{2}\right)} \right) dx \] Using the sine subtraction formula: \[ \sin A - \sin B = 2 \cos\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] where \( A = \left(n + \frac{3}{2}\right)x \) and \( B = \left(n + \frac{1}{2}\right)x \). ### Step 4: Simplify the expression This gives: \[ I_{n+1} - I_n = 2 \int_0^{\pi} \frac{\cos\left(n + 1\right)x \sin\left(x\right)}{\sin\left(\frac{x}{2}\right)} \, dx \] ### Step 5: Evaluate \( I_0 \) Now, let's evaluate \( I_0 \): \[ I_0 = \int_0^{\pi} \frac{\sin\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)} \, dx = \int_0^{\pi} 1 \, dx = \pi \] ### Step 6: Find \( I_n \) for \( n \geq 1 \) Since all \( I_n \) are equal for \( n = 0, 1, 2, \ldots, 20 \): \[ I_n = \pi \quad \text{for all } n \] ### Step 7: Calculate \( l_1^2 + l_2^2 + \ldots + l_{20}^2 \) Since \( I_n = \pi \): \[ l_1^2 + l_2^2 + \ldots + l_{20}^2 = 20 \cdot \pi^2 \] Thus, we have: \[ m \pi^2 = 20 \pi^2 \implies m = 20 \] ### Step 8: Find the largest prime factor of \( m \) The prime factorization of \( 20 \) is: \[ 20 = 2^2 \times 5 \] The largest prime factor of \( 20 \) is \( 5 \). ### Final Answer The largest prime factor of \( m \) is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

Let I_(n)=int_(0)^(pi//2) sin^(n)x dx, nin N . Then

The value of int_0^pi (sin(n+1/2)x)/(sin (x/2)) dx is, (a) n in I, n >= 0 pi/2 (b) 0 (c) pi (d) 2pi

If I_(n)=int_(0)^(pi)(1-sin2nx)/(1-cos2x)dx then I_(1),I_(2),I_(3),"….." are in

Prove that the value of : int_0^pi(sin(n+1/2)x)/sin(x/2)dx=pi

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Let L= lim_(nrarr infty) int_(a)^(infty)(n dx)/(1+n^(2)x^(2)) , where a in R, then L can be

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  2. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  3. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  4. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  5. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |