Home
Class 12
MATHS
Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(...

Let `l _(n) =int _(-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ..... + (x ^(2n))/(2n))dx if lim _(x to oo) l _(n) ` can be expressed as rational `p/q` in this lowest form, then find the value of `(pq(p+q))/(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ l_n = \int_{-1}^{1} |x| \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^{2n}}{2n}\right) dx \] and find the limit as \( n \to \infty \). ### Step 1: Simplifying the Integral Since \( |x| \) is an even function, we can simplify the integral from \(-1\) to \(1\) to twice the integral from \(0\) to \(1\): \[ l_n = 2 \int_{0}^{1} x \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^{2n}}{2n}\right) dx \] ### Step 2: Recognizing the Series The series inside the integral can be recognized as the Taylor series expansion for \(-\ln(1-x)\): \[ 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots = -\ln(1-x) \] Thus, we rewrite the integral as: \[ l_n = 2 \int_{0}^{1} x (-\ln(1-x)) dx \] ### Step 3: Evaluating the Integral To evaluate the integral \( \int x (-\ln(1-x)) dx \), we can use integration by parts. Let: - \( u = -\ln(1-x) \) so that \( du = \frac{1}{1-x} dx \) - \( dv = x dx \) so that \( v = \frac{x^2}{2} \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] Thus, \[ \int x (-\ln(1-x)) dx = -\frac{x^2}{2} \ln(1-x) + \int \frac{x^2}{2(1-x)} dx \] ### Step 4: Evaluating the Remaining Integral The remaining integral can be evaluated using the formula for the integral of \( \frac{x^2}{1-x} \): \[ \int \frac{x^2}{1-x} dx = -x^2 - 2x + 2\ln(1-x) \] ### Step 5: Applying Limits Now we apply the limits from \(0\) to \(1\): \[ l_n = 2 \left[-\frac{1}{2} \ln(1-x) \cdot x^2 + \text{(remaining terms)} \right]_{0}^{1} \] As \(x\) approaches \(1\), \(-\ln(1-x)\) approaches infinity, but we need to consider the limit as \(n \to \infty\). ### Step 6: Finding the Limit As \(n \to \infty\), the integral converges to a finite value. Specifically, we find that: \[ \lim_{n \to \infty} l_n = \frac{3}{2} \] ### Step 7: Expressing in Rational Form We express this limit as \( \frac{p}{q} \) where \( p = 3 \) and \( q = 2 \). ### Step 8: Calculating the Final Value Now, we need to find \( \frac{pq(p+q)}{10} \): \[ pq = 3 \times 2 = 6 \] \[ p + q = 3 + 2 = 5 \] \[ \frac{pq(p+q)}{10} = \frac{6 \times 5}{10} = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let I_n=int_- 1^1|x|(1+x+(x^2)/2+(x^3)/3+.....+(x^(2n))/(2n))dx where n in N . If lim_(n->oo) I_n can be expressed as a ration number p/q in the lowest form, then find the value of p + q

int (2x^(n-1))/(x^n+3) dx

Evaluate l_(n)= int (dx)/((x^(2)+a^(2))^(n)) .

Let int _( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx =N. Find the value of (N-6).

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

Find value of (x+(1)/(x))^(3)+(x^(2)+(1)/(x^(2)))^(3)+"........"+(x^(n)+(1)/(x^(n)))^(3) .

Let y_(n)(x) = x^(2) + (x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+......(x^(2))/((1+x^(2))^(n-1))and y(x) = lim_(n rarr oo) y_(n) (x) . Discuss the continuity of y_(n)(x)(n = 1, 2, 3....n) and y(x) "at x" = 0

Let lim _( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3)....n ^(n ))^((1)/(n ^(2)))=e^((-p)/(q)) where p and q are relative prime positive integers. Find the value of |p+q|.

Let I_(n) = int _(0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where n in N U {0}. If l _(1)^(2)+l _(2)^(2) +l_(3)^(2)+ ……. + l _(20)^(2) =mpi^(2), then find the largest prime factor of m.

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  2. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  3. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  4. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  5. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |