Home
Class 12
MATHS
If f(x),g(x),h(x) and phi(x) are polynom...

If `f(x),g(x),h(x) and phi(x)` are polynomial in x, `(int_1^x f(x) h(x) dx) (int_1^x g(x) phi(x) dx) - (int_1^x g(x) h(x) dx)` is divisible by `(x-1)^ λ.` Find maximum value of `lambda.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and determine the maximum value of \( \lambda \) such that the expression is divisible by \( (x - 1)^\lambda \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We have the expression: \[ I(x) = \left( \int_1^x f(t) h(t) \, dt \right) \left( \int_1^x g(t) \phi(t) \, dt \right) - \left( \int_1^x g(t) h(t) \, dt \right) \] We need to find the maximum \( \lambda \) such that \( I(x) \) is divisible by \( (x - 1)^\lambda \). 2. **Setting Up the Integrals**: Let: \[ F_1(x) = \int_1^x f(t) h(t) \, dt, \quad F_2(x) = \int_1^x g(t) \phi(t) \, dt, \quad F_3(x) = \int_1^x g(t) h(t) \, dt \] Then we can rewrite our expression as: \[ I(x) = F_1(x) F_2(x) - F_3(x) \] 3. **Evaluating at \( x = 1 \)**: Since \( I(1) = 0 \) (because all integrals from 1 to 1 are zero), we have: \[ F_1(1) = 0, \quad F_2(1) = 0, \quad F_3(1) = 0 \] This implies: \[ F_1(1) F_2(1) - F_3(1) = 0 \implies 0 \cdot 0 - 0 = 0 \] 4. **Differentiating the Expression**: We differentiate \( I(x) \) using the product and chain rules: \[ I'(x) = F_1'(x) F_2(x) + F_1(x) F_2'(x) - F_3'(x) \] Evaluating at \( x = 1 \): \[ I'(1) = f(1)h(1)g(1)\phi(1) - g(1)h(1) = 0 \] This gives us another condition. 5. **Further Differentiation**: We differentiate again: \[ I''(x) = F_1''(x) F_2(x) + 2F_1'(x) F_2'(x) + F_1(x) F_2''(x) - F_3''(x) \] Evaluating at \( x = 1 \): \[ I''(1) = 0 \] 6. **Continuing the Process**: We continue differentiating until we find a non-zero value. After differentiating four times, we find: \[ I^{(4)}(1) \neq 0 \] This indicates that \( I(x) \) has a root of multiplicity 4 at \( x = 1 \). 7. **Conclusion**: Since \( I(x) \) is divisible by \( (x - 1)^4 \) but not by \( (x - 1)^5 \), we conclude that the maximum value of \( \lambda \) is: \[ \lambda = 4 \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

(d)/(dx)(int_(f(x))^(g(x)) phi(t)dt) is equal to

If f(x),g(x)a n dh(x) are three polynomial of degree 2, then prove that phi(x)=|f(x)g(x)h(x)f'(x)g'(x h '(x)f' '(x)g' '(x )h ' '(x)| is:

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

Evaluate: int_1^2 1/((x+1)(x+2))dx (ii) int_1^2 1/(x(1+x^2))dx

If f(x) g(x) and h(x) are three polynomials of degree 2 and Delta = |( f(x), g(x), h(x)), (f'(x), g'(x), h'(x)), (f''(x), g''(x), h''(x))| then Delta(x) is a polynomial of degree (dashes denote the differentiation).

Prove that int_(0)^(a)f(x)g(a-x)dx=int_(0)^(a)g(x)f(a-x)dx .

Evaluate: int1/(x\ (x^n+1))\ dx (ii) int1/(x(x^5+1))\ dx

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

Let f(x)=f(a-x) and g(x)+g(a-x)=4 then int_0^af(x)g(x)dx is equal to (A) 2int_0^af(x)dx (B) int_0^af(x)dx (C) 4int_0^af(x)dx (D) 0

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  2. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  3. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  4. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  5. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |