Home
Class 12
MATHS
If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(...

If `int _(0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin (b),` where a and b are positive integers. Find the value of `(a+b)/2.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2} (3x^2 - 3x + 1) \cos(x^3 - 3x^2 + 4x - 2) \, dx \), we can use the property of definite integrals which states that: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx \] In our case, \( a = 0 \) and \( b = 2 \). Thus, we can write: \[ I = \int_{0}^{2} (3(2-x)^2 - 3(2-x) + 1) \cos((2-x)^3 - 3(2-x)^2 + 4(2-x) - 2) \, dx \] ### Step 1: Substitute \( 2 - x \) into the integral Calculating \( 3(2-x)^2 - 3(2-x) + 1 \): \[ 3(2-x)^2 = 3(4 - 4x + x^2) = 12 - 12x + 3x^2 \] \[ -3(2-x) = -6 + 3x \] Combining these gives: \[ 3(2-x)^2 - 3(2-x) + 1 = (12 - 12x + 3x^2) + (-6 + 3x) + 1 = 3x^2 - 9x + 7 \] ### Step 2: Substitute into the cosine term Now, we calculate \( (2-x)^3 - 3(2-x)^2 + 4(2-x) - 2 \): \[ (2-x)^3 = 8 - 12x + 6x^2 - x^3 \] \[ -3(2-x)^2 = -3(4 - 4x + x^2) = -12 + 12x - 3x^2 \] \[ 4(2-x) = 8 - 4x \] Combining these gives: \[ (2-x)^3 - 3(2-x)^2 + 4(2-x) - 2 = (8 - 12x + 6x^2 - x^3) + (-12 + 12x - 3x^2) + (8 - 4x) - 2 \] \[ = 8 - 12 + 8 - 2 + (-x^3 + 3x^2 - 4x) = -x^3 + 3x^2 + 0x + 0 = -x^3 + 3x^2 \] ### Step 3: Combine the two parts Now we can write: \[ I = \int_{0}^{2} (3x^2 - 9x + 7) \cos(-x^3 + 3x^2) \, dx \] Using the property of cosine, \( \cos(-\theta) = \cos(\theta) \): \[ I = \int_{0}^{2} (3x^2 - 9x + 7) \cos(x^3 - 3x^2) \, dx \] ### Step 4: Add the two integrals Now we have: \[ 2I = \int_{0}^{2} \left( (3x^2 - 3x + 1) + (3x^2 - 9x + 7) \right) \cos(x^3 - 3x^2) \, dx \] \[ = \int_{0}^{2} (6x^2 - 12x + 8) \cos(x^3 - 3x^2) \, dx \] ### Step 5: Factor out constants Factor out 2: \[ = 2 \int_{0}^{2} (3x^2 - 6x + 4) \cos(x^3 - 3x^2) \, dx \] ### Step 6: Change of variable Let \( t = x^3 - 3x^2 + 4x - 2 \). Then: \[ dt = (3x^2 - 6x + 4) \, dx \] Thus, the integral becomes: \[ I = \int_{t_0}^{t_2} \cos(t) \, dt \] where \( t_0 = 0 \) and \( t_2 = 2 \). ### Step 7: Evaluate the integral The integral of \( \cos(t) \) is \( \sin(t) \): \[ I = \left[ \sin(t) \right]_{0}^{2} = \sin(2) - \sin(0) = \sin(2) \] ### Step 8: Relate to the form \( a \sin(b) \) From the problem, we have \( I = a \sin(b) \). Here, \( a = 1 \) and \( b = 2 \). ### Final Calculation Now, we need to find \( \frac{a + b}{2} \): \[ \frac{1 + 2}{2} = \frac{3}{2} = 1.5 \] Thus, the final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

If sin(30^(@) + " arc " tan x) = 13/14 " and " 0 lt x lt 1" , the value of x is " (a sqrt3)/b , where a and b are positive integers with no common factors . Find the value of ((a+b)/2) .

Find int e^(2x) sin (3x + 1) dx

int(1)/(cos^(2) x-3 sin^(2) x)dx

If int_(0)^(1)(ax+b)/(x^(2)+3x+2)dx=ln.(3)/(2) , then

If int _(0) ^(x) (x ^(3) cos ^(4) x sin ^(2)x)/(pi^(2) -3pix + 3x ^(2))dx = lamda int _( 0)^(pi//2)sin ^(2) x dx, then the value of lamda is:

Find int_0^1(4x^3+3x^2-2x+1)dx

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is:

Evaluate: int _0^((pi)/(2)) (sin ^(2) x .cos ^(2) x )/((sin ^(3) x+ cos ^(3) x)^(2)) dx

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  2. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  3. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  4. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  5. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |