Home
Class 12
MATHS
let f (x) = int (0) ^(x) e ^(x-y) f'(y) ...

let `f (x) = int _(0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x)`
Find the number of roots of the equation `f (x) =0.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the function defined by the integral: Given: \[ f(x) = \int_0^x e^{x-y} f'(y) \, dy - (x^2 - x + 1)e^x \] We need to find the number of roots of the equation \( f(x) = 0 \). ### Step 1: Analyze the Integral We can rewrite the integral part: \[ \int_0^x e^{x-y} f'(y) \, dy \] Using the substitution \( u = x - y \), we can express \( dy = -du \) and change the limits accordingly. However, we will directly use integration by parts for simplicity. ### Step 2: Integration by Parts Let: - \( u = e^{x-y} \) (first part) - \( dv = f'(y) \, dy \) (second part) Then: - \( du = -e^{x-y} \, dy \) - \( v = f(y) \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int_0^x e^{x-y} f'(y) \, dy = \left[ e^{x-y} f(y) \right]_0^x - \int_0^x f(y)(-e^{x-y}) \, dy \] ### Step 3: Evaluate the Boundary Terms Evaluating the boundary terms: - At \( y = x \): \( e^{x-x} f(x) = f(x) \) - At \( y = 0 \): \( e^{x-0} f(0) = e^x f(0) \) Thus: \[ \int_0^x e^{x-y} f'(y) \, dy = f(x) - e^x f(0) + \int_0^x f(y)e^{x-y} \, dy \] ### Step 4: Substitute Back into \( f(x) \) Substituting back into \( f(x) \): \[ f(x) = f(x) - e^x f(0) + \int_0^x f(y)e^{x-y} \, dy - (x^2 - x + 1)e^x \] ### Step 5: Simplifying the Equation Rearranging gives: \[ e^x f(0) + (x^2 - x + 1)e^x = \int_0^x f(y)e^{x-y} \, dy \] ### Step 6: Setting Up the Equation Now we need to find the roots of: \[ f(x) = 0 \] This leads to: \[ e^x (f(0) + (x^2 - x + 1)) = \int_0^x f(y)e^{x-y} \, dy \] ### Step 7: Analyze the Roots We know that \( e^x \) is never zero. Therefore, we need to analyze: \[ f(0) + (x^2 - x + 1) = 0 \] ### Step 8: Finding \( f(0) \) From the original equation, we can find \( f(0) \): When \( x = 0 \): \[ f(0) = \int_0^0 e^{0-y} f'(y) \, dy - (0^2 - 0 + 1)e^0 = 0 - 1 = -1 \] Thus: \[ -1 + (x^2 - x + 1) = 0 \] This simplifies to: \[ x^2 - x + 0 = 0 \] ### Step 9: Solving the Quadratic The quadratic equation is: \[ x^2 - x = 0 \] Factoring gives: \[ x(x - 1) = 0 \] ### Step 10: Finding the Roots The roots are: \[ x = 0 \quad \text{and} \quad x = 1 \] ### Conclusion Thus, the number of roots of the equation \( f(x) = 0 \) is: **2 roots: \( x = 0 \) and \( x = 1 \)**.
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

Let f (x) = x^(2)+10x+20. Find the number of real solution of the equation f (f (f (f(x))))=0

Let f(x)=max{tanx, cotx} . Then the number of roots of the equation f(x)=(1)/(2)" in "(0, 2pi) is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then Number of roots of the equation f(x)=e^(x) is

Let f (x)=(x+1) (x+2) (x+3)…..(x+100) and g (x) =f (x) f''(x) -f'(x) ^(2). Let n be the numbers of real roots of g(x) =0, then:

If f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

Following is the graph of y = f(x). Find the roots of the equation f(x) = 0, f(x) = 4 and f(x) = 10 .

Let f :R to R be a continous and differentiable function such that f (x+y ) =f (x). F(y)AA x, y, f(x) ne 0 and f (0 )=1 and f '(0) =2. Let g (xy) =g (x). g (y) AA x, y and g'(1)=2.g (1) ne =0 The number of values of x, where f (x) g(x):

If f(x) =x + int_(0)^(1) (xy^(2)+x^(2)y)(f(y)) dy, "find" f(x) if x and y are independent.

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

int e^x {f(x)-f'(x)}dx= phi(x) , then int e^x f(x) dx is

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  2. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  3. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  4. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  5. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |