Home
Class 12
MATHS
For a positive integer n, let I (n) =int...

For a positive integer n, let `I _(n) =int _(-pi)^(pi) ((pi)/(2) -|x|) cos nx dx`
Find the value of `[I _(1) + I _(3) +I_(4)]` (where [.] denotes greatest integer function) .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( I_n = \int_{-\pi}^{\pi} \left( \frac{\pi}{2} - |x| \right) \cos(nx) \, dx \) for \( n = 1, 3, 4 \) and then find \( [I_1 + I_3 + I_4] \), where \( [.] \) denotes the greatest integer function. ### Step-by-Step Solution: 1. **Understanding the Integral**: The integral \( I_n \) is defined as: \[ I_n = \int_{-\pi}^{\pi} \left( \frac{\pi}{2} - |x| \right) \cos(nx) \, dx \] 2. **Recognizing the Even Function**: Since \( |x| \) is an even function and \( \cos(nx) \) is also even, the product \( \left( \frac{\pi}{2} - |x| \right) \cos(nx) \) is even. Therefore, we can simplify the integral: \[ I_n = 2 \int_{0}^{\pi} \left( \frac{\pi}{2} - x \right) \cos(nx) \, dx \] 3. **Expanding the Integral**: We can split the integral: \[ I_n = 2 \left( \int_{0}^{\pi} \frac{\pi}{2} \cos(nx) \, dx - \int_{0}^{\pi} x \cos(nx) \, dx \right) \] 4. **Calculating the First Integral**: The first integral can be calculated as follows: \[ \int_{0}^{\pi} \frac{\pi}{2} \cos(nx) \, dx = \frac{\pi}{2} \left[ \frac{\sin(nx)}{n} \right]_{0}^{\pi} = \frac{\pi}{2} \cdot \frac{\sin(n\pi)}{n} = 0 \] (since \( \sin(n\pi) = 0 \) for any integer \( n \)). 5. **Calculating the Second Integral Using Integration by Parts**: For the second integral, we use integration by parts: Let \( u = x \) and \( dv = \cos(nx) \, dx \). Then \( du = dx \) and \( v = \frac{\sin(nx)}{n} \). Thus, \[ \int x \cos(nx) \, dx = x \cdot \frac{\sin(nx)}{n} - \int \frac{\sin(nx)}{n} \, dx \] Evaluating the second integral: \[ \int \sin(nx) \, dx = -\frac{\cos(nx)}{n} \] Therefore, \[ \int x \cos(nx) \, dx = x \cdot \frac{\sin(nx)}{n} + \frac{\cos(nx)}{n^2} \] Evaluating from \( 0 \) to \( \pi \): \[ \left[ x \cdot \frac{\sin(nx)}{n} + \frac{\cos(nx)}{n^2} \right]_{0}^{\pi} = \left( \pi \cdot \frac{\sin(n\pi)}{n} + \frac{\cos(n\pi)}{n^2} \right) - \left( 0 + \frac{1}{n^2} \right) \] This simplifies to: \[ 0 + \frac{\cos(n\pi)}{n^2} - \frac{1}{n^2} = \frac{\cos(n\pi) - 1}{n^2} \] 6. **Putting It All Together**: Now substituting back into \( I_n \): \[ I_n = 2 \left( 0 - \frac{\cos(n\pi) - 1}{n^2} \right) = \frac{2(1 - \cos(n\pi))}{n^2} \] 7. **Calculating \( I_1, I_3, I_4 \)**: - For \( n = 1 \): \[ I_1 = \frac{2(1 - \cos(\pi))}{1^2} = \frac{2(1 - (-1))}{1} = 4 \] - For \( n = 3 \): \[ I_3 = \frac{2(1 - \cos(3\pi))}{3^2} = \frac{2(1 - (-1))}{9} = \frac{4}{9} \] - For \( n = 4 \): \[ I_4 = \frac{2(1 - \cos(4\pi))}{4^2} = \frac{2(1 - 1)}{16} = 0 \] 8. **Summing Up**: Now we find \( I_1 + I_3 + I_4 \): \[ I_1 + I_3 + I_4 = 4 + \frac{4}{9} + 0 = 4 + \frac{4}{9} = \frac{36}{9} + \frac{4}{9} = \frac{40}{9} \] 9. **Finding the Greatest Integer**: Finally, we take the greatest integer: \[ \left[ I_1 + I_3 + I_4 \right] = \left[ \frac{40}{9} \right] = 4 \] ### Final Answer: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|3 Videos
  • HYPERBOLA

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos

Similar Questions

Explore conceptually related problems

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

The value of int_(-2)^1 [x[1+cos((pix)/2)]+1] dx, where [.] denotes greatest integer function is

The value of int_(-20pi)^(20 pi) |sin x| [ sin x] dx is (where [.] denotes greatest integer function)

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

VIKAS GUPTA (BLACK BOOK) ENGLISH-INDEFINITE AND DEFINITE INTEGRATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let int ( 1) ^(sqrt5)(x ^(2x ^(2)+1) +ln "("x ^(2x ^(2x ^(2)+1))")")dx...

    Text Solution

    |

  2. If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f ...

    Text Solution

    |

  3. Find the value of |a| for which the area of triangle included between ...

    Text Solution

    |

  4. Let I = int (0) ^(pi) x ^(6) (pi-x) ^(8)dx, then (pi ^(15))/((""^(15) ...

    Text Solution

    |

  5. If I = int (0) ^(100) (sqrtx)dx, then the value of (9I)/(155) is:

    Text Solution

    |

  6. Let I(n) = int (0)^(pi) (sin (n + (1)/(2))x )/(sin ((x)/(2)))dx where ...

    Text Solution

    |

  7. If M be the maximum value of 72 int (0) ^(y) sqrt(x ^(4) +(y-y^(2))^(2...

    Text Solution

    |

  8. Find the number points where f (theta) = int (-1)^(1) (sin theta dx )/...

    Text Solution

    |

  9. underset(nrarroo)lim[(1)/(sqrtn)+(1)/(sqrt(2n))+(1)/(sqrt(3n))+...+(1)...

    Text Solution

    |

  10. The maximum value of int (-pi//2) ^(2pi//2) sin x. f (x) dx, subject t...

    Text Solution

    |

  11. Given a function g, continous everywhere such that g (1)=5 and int (0)...

    Text Solution

    |

  12. If f (n)= 1/pi int (0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2)...

    Text Solution

    |

  13. Let f (2-x) =f (2+xand f (4-x )= f (4+x). Function f (x) satisfies int...

    Text Solution

    |

  14. Let l (n) =int (-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ........

    Text Solution

    |

  15. Let lim ( x to oo) n ^((1)/(2 )(1+(1 )/(n))). (1 ^(1) . 2 ^(2) . 3 ^(3...

    Text Solution

    |

  16. If int (a )^(b) |sin x |dx =8 and int (0)^(a+b) |cos x| dx=9 then the ...

    Text Solution

    |

  17. If f(x),g(x),h(x) and phi(x) are polynomial in x, (int1^x f(x) h(x) dx...

    Text Solution

    |

  18. If int (0)^(2)(3x ^(2) -3x +1) cos (x ^(3) -3x ^(2)+4x -2) dx = a sin ...

    Text Solution

    |

  19. let f (x) = int (0) ^(x) e ^(x-y) f'(y) dy - (x ^(2) -x+1)e ^(x) Fin...

    Text Solution

    |

  20. For a positive integer n, let I (n) =int (-pi)^(pi) ((pi)/(2) -|x|) co...

    Text Solution

    |