Home
Class 12
MATHS
T(n) =sum ( r =2n )^(3n-1) (r)/(r ^(2) +...

`T_(n) =sum _( r =2n )^(3n-1) (r)/(r ^(2) +n ^(2)), S_(n) = sum _(r =2n+1)^(3n) (r )/(r ^(2) + n ^(2)),` then ` AA n in {1,2,3...}:`

A

`T_(n ) gt 1/2 ln 2`

B

` S_(n) lt 1/2 ln 2`

C

` T_(n) lt 1/2 ln 2`

D

` S_(n)gt 1/2 ln 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the sums \( T_n \) and \( S_n \) given by: \[ T_n = \sum_{r=2n}^{3n-1} \frac{r}{r^2 + n^2} \] \[ S_n = \sum_{r=2n+1}^{3n} \frac{r}{r^2 + n^2} \] We will evaluate the limits of these sums as \( n \) approaches infinity. ### Step 1: Rewrite the sums in terms of \( n \) We can express \( T_n \) and \( S_n \) in a more manageable form by factoring out \( n^2 \) from the denominator: \[ T_n = \sum_{r=2n}^{3n-1} \frac{r}{n^2 \left( \frac{r^2}{n^2} + 1 \right)} = \frac{1}{n^2} \sum_{r=2n}^{3n-1} \frac{r}{\left( \frac{r}{n} \right)^2 + 1} \] Similarly for \( S_n \): \[ S_n = \sum_{r=2n+1}^{3n} \frac{r}{n^2 \left( \frac{r^2}{n^2} + 1 \right)} = \frac{1}{n^2} \sum_{r=2n+1}^{3n} \frac{r}{\left( \frac{r}{n} \right)^2 + 1} \] ### Step 2: Change of variables Let \( x = \frac{r}{n} \). Then, as \( r \) goes from \( 2n \) to \( 3n-1 \), \( x \) goes from \( 2 \) to \( 3 - \frac{1}{n} \). The sum can be approximated by an integral as \( n \to \infty \): \[ T_n \approx \frac{1}{n^2} \int_{2}^{3} \frac{nx}{x^2 + 1} \, n \, dx = \int_{2}^{3} \frac{x}{x^2 + 1} \, dx \] ### Step 3: Evaluate the integral Now we compute the integral: \[ \int \frac{x}{x^2 + 1} \, dx \] Using substitution \( u = x^2 + 1 \), \( du = 2x \, dx \): \[ \int \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \ln |x^2 + 1| + C \] Evaluating from \( 2 \) to \( 3 \): \[ \left[ \frac{1}{2} \ln |x^2 + 1| \right]_{2}^{3} = \frac{1}{2} \left( \ln(10) - \ln(5) \right) = \frac{1}{2} \ln \left( \frac{10}{5} \right) = \frac{1}{2} \ln(2) \] Thus, we find: \[ T_n \to \frac{1}{2} \ln(2) \quad \text{as } n \to \infty \] ### Step 4: Evaluate \( S_n \) Using similar steps for \( S_n \): \[ S_n \approx \frac{1}{n^2} \int_{2}^{3} \frac{nx}{x^2 + 1} \, n \, dx = \int_{2}^{3} \frac{x}{x^2 + 1} \, dx \] The evaluation is the same, leading to: \[ S_n \to \frac{1}{2} \ln(2) \quad \text{as } n \to \infty \] ### Conclusion Both \( T_n \) and \( S_n \) converge to \( \frac{1}{2} \ln(2) \) as \( n \) approaches infinity. Thus, we conclude: \[ T_n > \frac{1}{2} \ln(2) \quad \text{and} \quad S_n > \frac{1}{2} \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (COMPREHENSION TYPE PROBLEMS)|6 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (MATCHING TYPE PROBLEMS)|1 Videos
  • AREA UNDER CURVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise AXERCISE (SUBJECTIVE TYPE PROBLEMS)|8 Videos
  • APPLICATION OF DERIVATIVES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos

Similar Questions

Explore conceptually related problems

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

If S_(n) = sum_(r=1)^(n) (r )/(1.3.5.7"……"(2r+1)) , then

If sum _(r =1) ^(n ) T _(r) = (n +1) ( n +2) ( n +3) then find sum _( r =1) ^(n) (1)/(T _(r))

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If sum_(r=1)^(n) T_(r)=(n(n+1)(n+2)(n+3))/(8) , then lim_(ntooo) sum_(r=1)^(n) (1)/(T_(r))=

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (3012)/(T_(r))=

If sum _( r -1) ^(n) T_(r) = (n (n +1)(n+2))/(3), then lim _(x to oo) sum _(r =1) ^(n) (2008)/(T_(r))=

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then