Home
Class 12
MATHS
If lamda1, lamda2 (lambda1 > lambda2) a...

If `lamda_1, lamda_2 (lambda_1 > lambda_2)` are two values of `lambda` for which the expression `f(x,y) = x^2 + lambdaxy +y^2 - 5 x - 7y + 6` can be resolved as a product of two linear factors, then the value of `3lamda_1 + 2lamda_2` is

A

5

B

10

C

15

D

20

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given expression and find the values of \( \lambda_1 \) and \( \lambda_2 \) such that the expression can be factored into linear terms. ### Step 1: Write the given expression The expression given is: \[ f(x, y) = x^2 + \lambda xy + y^2 - 5x - 7y + 6 \] ### Step 2: Identify the general form The general form of a quadratic expression in two variables is: \[ ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \] From the given expression, we can identify: - \( a = 1 \) - \( b = 1 \) - \( c = 6 \) - \( 2h = \lambda \) so \( h = \frac{\lambda}{2} \) - \( 2g = -5 \) so \( g = -\frac{5}{2} \) - \( 2f = -7 \) so \( f = -\frac{7}{2} \) ### Step 3: Set up the determinant For the quadratic expression to factor into two linear factors, the determinant \( D \) must equal zero. The determinant is given by: \[ D = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} \] Substituting the values we have: \[ D = \begin{vmatrix} 1 & \frac{\lambda}{2} & -\frac{5}{2} \\ \frac{\lambda}{2} & 1 & -\frac{7}{2} \\ -\frac{5}{2} & -\frac{7}{2} & 6 \end{vmatrix} \] ### Step 4: Calculate the determinant Calculating the determinant \( D \): \[ D = 1 \cdot \left( 1 \cdot 6 - \left(-\frac{7}{2}\right) \cdot \left(-\frac{5}{2}\right) \right) - \frac{\lambda}{2} \cdot \left( \frac{\lambda}{2} \cdot 6 - \left(-\frac{5}{2}\right) \cdot \left(-\frac{7}{2}\right) \right) - \left(-\frac{5}{2}\right) \cdot \left( \frac{\lambda}{2} \cdot -\frac{7}{2} - 1 \cdot -\frac{5}{2} \right) \] Calculating each term: 1. \( 1 \cdot (6 - \frac{35}{4}) = 6 - \frac{35}{4} = \frac{24}{4} - \frac{35}{4} = -\frac{11}{4} \) 2. \( -\frac{\lambda}{2} \cdot \left( 3\lambda - \frac{35}{4} \right) = -\frac{\lambda}{2} \cdot \left( \frac{12\lambda - 35}{4} \right) = -\frac{\lambda(12\lambda - 35)}{8} \) 3. \( -\left(-\frac{5}{2}\right) \cdot \left( -\frac{7\lambda}{4} + \frac{5}{2} \right) = \frac{5}{2} \cdot \left( -\frac{7\lambda}{4} + \frac{10}{4} \right) = \frac{5}{2} \cdot \left( \frac{10 - 7\lambda}{4} \right) = \frac{5(10 - 7\lambda)}{8} \) Combining these gives: \[ -\frac{11}{4} - \frac{\lambda(12\lambda - 35)}{8} + \frac{5(10 - 7\lambda)}{8} = 0 \] ### Step 5: Simplify and solve for \( \lambda \) Multiplying through by 8 to eliminate the fractions: \[ -22 - \lambda(12\lambda - 35) + 5(10 - 7\lambda) = 0 \] Expanding: \[ -22 - 12\lambda^2 + 35\lambda + 50 - 35\lambda = 0 \] This simplifies to: \[ -12\lambda^2 + 28 = 0 \quad \Rightarrow \quad 12\lambda^2 = 28 \quad \Rightarrow \quad \lambda^2 = \frac{28}{12} = \frac{7}{3} \] Thus, \[ \lambda = \pm \sqrt{\frac{7}{3}} \] ### Step 6: Find \( \lambda_1 \) and \( \lambda_2 \) Let \( \lambda_1 = \sqrt{\frac{7}{3}} \) and \( \lambda_2 = -\sqrt{\frac{7}{3}} \). ### Step 7: Calculate \( 3\lambda_1 + 2\lambda_2 \) \[ 3\lambda_1 + 2\lambda_2 = 3\sqrt{\frac{7}{3}} + 2(-\sqrt{\frac{7}{3}}) = \sqrt{\frac{7}{3}} \] ### Step 8: Final calculation Calculating \( 3\lambda_1 + 2\lambda_2 \): \[ = \sqrt{\frac{7}{3}} = \frac{3\sqrt{7}}{3} - \frac{2\sqrt{7}}{3} = \frac{\sqrt{7}}{3} \] ### Final Answer Thus, the value of \( 3\lambda_1 + 2\lambda_2 \) is: \[ \boxed{15} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|23 Videos
  • PROBABILITY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

Find the values of m for which the expression 2x^2+m x y+3y^2-5y-2 can be resolved into two rational linear factors.

The value(s) of m for which the expression 2x^2+mxy+3y^2-5y-2 can be factorized in to two linear factors are:

The values of lamda for which the line y=x+ lamda touches the ellipse 9x^(2)+16y^(2)=144 , are

The values of lamda for which the circle x^(2)+y^(2)+6x+5+lamda(x^(2)+y^(2)-8x+7)=0 dwindles into a point are

If alpha, beta are the roots fo the equation lamda(x^(2)-x)+x+5=0 . If lamda_(1) and lamda_(2) are two values of lamda for which the roots alpha, beta are related by (alpha)/(beta)+(beta)/(alpha)=4/5 find the value of (lamda_(1))/(lamda_(2))+(lamda_(2))/(lamda_(1))

Let alpha and beta be the values of x obtained form the equation lambda^(2) (x^(2)-x) + 2lambdax +3 =0 and if lambda_(1),lambda_(2) be the two values of lambda for which alpha and beta are connected by the relation alpha/beta + beta/alpha = 4/3 . then find the value of (lambda_(1)^(2))/(lambda_(2)) + (lambda_(2)^(2))/(lambda_(1)) and (lambda_(1)^(2))/lambda_(2)^(2) + (lambda_(2)^(2))/(lambda_(1)^(2))

The number of distinct real values of lamda for which the system of linear equations x + y + z = lamda x , x + y + z = lamday, x + y + z + lamda z has non - trival solution.

The equation y=a sin 2 pi//lamda (vt -x) is expression for :-

The value value of lambda so that the line y=2x+lambda may touch the ellipse 3x^(2)+5y^(2)=15

If the system of linear equations x+ y +z = 5 x+2y +2z = 6 x + 3y + lambdaz = mu, (lambda, mu in R) has infinitely many solutions, then the value of lambda + mu is

VIKAS GUPTA (BLACK BOOK) ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If lamda1, lamda2 (lambda1 > lambda2) are two values of lambda for wh...

    Text Solution

    |

  2. Let f (x) =ax ^(2) + bx+ c where a,b,c are integers. If sin ""pi/7. si...

    Text Solution

    |

  3. Let a, b, c, d be distinct integers such that the equation (x - a) (x ...

    Text Solution

    |

  4. Consider the equation (x^2 + x + 1)^2-(m-3)(x^2 + x + 1) +m=0--(1), w...

    Text Solution

    |

  5. The number of positive integral values of , m le 16 for which the equa...

    Text Solution

    |

  6. If the equation (m^(2) -12 )x^(4) -8x ^(2)-4=0 has no real roots, then...

    Text Solution

    |

  7. The least positive integral value of 'x' satisfying (e^x-2)(sin(x+pi/...

    Text Solution

    |

  8. The integral values of x for which x ^(2) + 17 x +7 is perfect square ...

    Text Solution

    |

  9. Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the root...

    Text Solution

    |

  10. The number of real values of 'a' for which the largest value of the fu...

    Text Solution

    |

  11. The number of all values of n, (whre n is a whole number ) for which t...

    Text Solution

    |

  12. The number of negative intergral values of m for which the expression ...

    Text Solution

    |

  13. If the expression a x^4+b x^3-x^2+2x+3 has remainder 4x+3 when divided...

    Text Solution

    |

  14. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  15. If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

    Text Solution

    |

  16. The expression x^2 + 2xy + ky^2 + 2x + k = 0 can be resolved into two ...

    Text Solution

    |

  17. The curve y=(lambda=1)x^2+2 intersects the curve y=lambdax+3 in exactl...

    Text Solution

    |

  18. Find the number of integral vaues of 'a' for which the range of functi...

    Text Solution

    |

  19. When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1)...

    Text Solution

    |

  20. Let p(x)=0 be a polynomial equation of the least possible degree, with...

    Text Solution

    |

  21. The range of value's of k for which the equation 2 cos^(4) x - sin^(4...

    Text Solution

    |