Home
Class 12
MATHS
Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1),...

Let `f (x) =(x^(2) +x-1)/(x ^(2) - x+1),` then the largest value of `f (x) AA x in [-1, 3]` is:

A

`3/5`

B

`5/3`

C

`1`

D

`-1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the largest value of the function \( f(x) = \frac{x^2 + x - 1}{x^2 - x + 1} \) for \( x \) in the interval \([-1, 3]\), we will follow these steps: ### Step 1: Analyze the function We start with the function: \[ f(x) = \frac{x^2 + x - 1}{x^2 - x + 1} \] ### Step 2: Rewrite the function We can rewrite \( f(x) \) as: \[ f(x) = \frac{x^2 - x + 1 + 2x - 2}{x^2 - x + 1} = 1 + \frac{2x - 2}{x^2 - x + 1} \] This simplifies to: \[ f(x) = 1 + \frac{2(x - 1)}{x^2 - x + 1} \] ### Step 3: Find critical points To find the maximum value of \( f(x) \), we need to analyze the term \( \frac{2(x - 1)}{x^2 - x + 1} \). We will find the derivative of \( f(x) \) and set it to zero to find critical points. Let: \[ g(x) = \frac{2(x - 1)}{x^2 - x + 1} \] Using the quotient rule, we find \( g'(x) \): \[ g'(x) = \frac{(2)(x^2 - x + 1) - 2(x - 1)(2x - 1)}{(x^2 - x + 1)^2} \] Setting \( g'(x) = 0 \) gives us the critical points. ### Step 4: Evaluate endpoints and critical points We will evaluate \( f(x) \) at the endpoints of the interval and at any critical points found in the previous step. 1. Evaluate \( f(-1) \): \[ f(-1) = \frac{(-1)^2 + (-1) - 1}{(-1)^2 - (-1) + 1} = \frac{1 - 1 - 1}{1 + 1 + 1} = \frac{-1}{3} = -\frac{1}{3} \] 2. Evaluate \( f(3) \): \[ f(3) = \frac{3^2 + 3 - 1}{3^2 - 3 + 1} = \frac{9 + 3 - 1}{9 - 3 + 1} = \frac{11}{7} \] 3. Evaluate \( f\left(\frac{1}{2}\right) \) if it is a critical point: \[ f\left(\frac{1}{2}\right) = 1 + \frac{2\left(\frac{1}{2} - 1\right)}{\left(\frac{1}{2}\right)^2 - \frac{1}{2} + 1} = 1 + \frac{2\left(-\frac{1}{2}\right)}{\frac{1}{4} - \frac{1}{2} + 1} = 1 + \frac{-1}{\frac{3}{4}} = 1 - \frac{4}{3} = -\frac{1}{3} \] ### Step 5: Compare values Now we compare the values: - \( f(-1) = -\frac{1}{3} \) - \( f(3) = \frac{11}{7} \) - \( f\left(\frac{1}{2}\right) = -\frac{1}{3} \) ### Conclusion The largest value of \( f(x) \) in the interval \([-1, 3]\) is: \[ \boxed{\frac{11}{7}} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|23 Videos
  • PROBABILITY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1) , In above problem, the range of f (x) AA x in [-1, 1] is:

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1 , then derivative of f(x) with respect to x, is

Let f" [1,2] to (-oo,oo) be given by f(x)=(x^(4)+3x^(2)+1)/(x^(2)+1) then find value of in [f_(max)]" in "[-1,2] where [.] is greatest integer function :

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

Let f (x) =x ^(3) + 6x ^(2) + ax +2, if (-3, -1) is the largest possible interval for which f (x) is decreasing function, then a=

Let f(x)=x^(2)-2xandg(x)=f(f(x)-1)+f(5-f(x)), then

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x) =(x^(2) +x-1)/(x ^(2) - x+1), then the largest value of f (...

    Text Solution

    |

  2. Let f (x) =ax ^(2) + bx+ c where a,b,c are integers. If sin ""pi/7. si...

    Text Solution

    |

  3. Let a, b, c, d be distinct integers such that the equation (x - a) (x ...

    Text Solution

    |

  4. Consider the equation (x^2 + x + 1)^2-(m-3)(x^2 + x + 1) +m=0--(1), w...

    Text Solution

    |

  5. The number of positive integral values of , m le 16 for which the equa...

    Text Solution

    |

  6. If the equation (m^(2) -12 )x^(4) -8x ^(2)-4=0 has no real roots, then...

    Text Solution

    |

  7. The least positive integral value of 'x' satisfying (e^x-2)(sin(x+pi/...

    Text Solution

    |

  8. The integral values of x for which x ^(2) + 17 x +7 is perfect square ...

    Text Solution

    |

  9. Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the root...

    Text Solution

    |

  10. The number of real values of 'a' for which the largest value of the fu...

    Text Solution

    |

  11. The number of all values of n, (whre n is a whole number ) for which t...

    Text Solution

    |

  12. The number of negative intergral values of m for which the expression ...

    Text Solution

    |

  13. If the expression a x^4+b x^3-x^2+2x+3 has remainder 4x+3 when divided...

    Text Solution

    |

  14. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  15. If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

    Text Solution

    |

  16. The expression x^2 + 2xy + ky^2 + 2x + k = 0 can be resolved into two ...

    Text Solution

    |

  17. The curve y=(lambda=1)x^2+2 intersects the curve y=lambdax+3 in exactl...

    Text Solution

    |

  18. Find the number of integral vaues of 'a' for which the range of functi...

    Text Solution

    |

  19. When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1)...

    Text Solution

    |

  20. Let p(x)=0 be a polynomial equation of the least possible degree, with...

    Text Solution

    |

  21. The range of value's of k for which the equation 2 cos^(4) x - sin^(4...

    Text Solution

    |