Home
Class 12
MATHS
If x^2+px+1 is a factor of ax^3+bx+c the...

If `x^2+px+1` is a factor of `ax^3+bx+c` then a) `a^2+c^2=-ab` b) `a^2+c^2ab` c) `a^2-c^2=ab` d) `a^2-c^2=-ab`

A

A) `a ^(2)+ xc ^(2) =-ab`

B

B) `a ^(2) + c ^(2) =ab`

C

C) `a ^(2) - c ^(2)=ab`

D

D) `a ^(2) - c ^(2) =-ab`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the conditions under which the polynomial \(x^2 + px + 1\) is a factor of the polynomial \(ax^3 + bx + c\). ### Step-by-step Solution: 1. **Understanding the Problem**: We know that if \(x^2 + px + 1\) is a factor of \(ax^3 + bx + c\), then when we divide \(ax^3 + bx + c\) by \(x^2 + px + 1\), the remainder must be zero. 2. **Performing Polynomial Long Division**: - We will divide \(ax^3 + bx + c\) by \(x^2 + px + 1\). - The first term of the quotient will be \(a\) because \(a \cdot x^2 = ax^3\). - Multiply \(x^2 + px + 1\) by \(a\): \[ a(x^2 + px + 1) = ax^3 + apx^2 + a \] - Subtract this from \(ax^3 + bx + c\): \[ (ax^3 + bx + c) - (ax^3 + apx^2 + a) = -apx^2 + (b - a)x + (c - a) \] 3. **Continuing the Division**: - Next, we take the term \(-apx^2\) and divide it by \(x^2\) to get \(-pa\). - Multiply \(x^2 + px + 1\) by \(-pa\): \[ -pa(x^2 + px + 1) = -pax^2 - p^2ax - pa \] - Subtract this from the previous remainder: \[ (-apx^2 + (b - a)x + (c - a)) - (-pax^2 - p^2ax - pa) = (p^2a + b - a)x + (c - a + pa) \] 4. **Setting the Remainder to Zero**: - For \(x^2 + px + 1\) to be a factor, both coefficients of \(x\) and the constant term must equal zero: \[ p^2a + b - a = 0 \quad \text{(1)} \] \[ c - a + pa = 0 \quad \text{(2)} \] 5. **Solving for \(p\)**: - From equation (2), we can express \(p\): \[ pa = a - c \implies p = \frac{a - c}{a} \] 6. **Substituting \(p\) into Equation (1)**: - Substitute \(p\) into equation (1): \[ \left(\frac{a - c}{a}\right)^2 a + b - a = 0 \] \[ \frac{(a - c)^2}{a} + b - a = 0 \] \[ (a - c)^2 + ab - a^2 = 0 \] \[ a^2 - 2ac + c^2 + ab - a^2 = 0 \] \[ -2ac + c^2 + ab = 0 \] 7. **Rearranging the Equation**: - Rearranging gives us: \[ c^2 - 2ac + ab = 0 \] - This can be rewritten as: \[ a^2 - c^2 = -ab \] ### Final Answer: The correct option is: **d) \(a^2 - c^2 = -ab\)**.
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|23 Videos
  • PROBABILITY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

Factorise a^2 - 2ab + b^2 - c^2

Factorise : (ii) 35a^(3) b^(2) c + 42 ab^(2) c^(2)

Factorise : 2ab^(2) c - 2a + 3b^(3) c - 3b - 4b^(2) c^(2) + 4c

Factorise : ab^2 - (a-c) b-c

If the roots of the equation x^3+3ax^2+3bx+c=0 are in H.P. , then (i) 2b^2=c(3ab-c) (ii) 2b^3=c(3ab-c) (iii) 2b^3=c^(2)(3ab-c) (iv) 2b^2=c^(2)(3ab-c)

If ∣ -a a^2 ab ac ab -b^2 bc ac bc -c^2 | = ka^2b^2c^2 , then k is equal to

Factorise completely : a^(2) + 2ab + b^(2) -c^(2)

Divide : 4a^(2) + 12ab + 9b^(2) - 25c^(2) by 2a + 3b + 5c

in figure, ABC is an isosceles traingle, right angled at C. therefore a) AB^2 = 2AC^2 b) BC^2 = 2AB^2 c) AC^2 = 2AB^2 d) AB^2 = 4AC^2

If a, b, c are positive integers such that a^2+ 2b^2-2ab = 169 and 2bc - c^2= 169 then a + b + c is:

VIKAS GUPTA (BLACK BOOK) ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If x^2+px+1 is a factor of ax^3+bx+c then a) a^2+c^2=-ab b) a^2+c^2a...

    Text Solution

    |

  2. Let f (x) =ax ^(2) + bx+ c where a,b,c are integers. If sin ""pi/7. si...

    Text Solution

    |

  3. Let a, b, c, d be distinct integers such that the equation (x - a) (x ...

    Text Solution

    |

  4. Consider the equation (x^2 + x + 1)^2-(m-3)(x^2 + x + 1) +m=0--(1), w...

    Text Solution

    |

  5. The number of positive integral values of , m le 16 for which the equa...

    Text Solution

    |

  6. If the equation (m^(2) -12 )x^(4) -8x ^(2)-4=0 has no real roots, then...

    Text Solution

    |

  7. The least positive integral value of 'x' satisfying (e^x-2)(sin(x+pi/...

    Text Solution

    |

  8. The integral values of x for which x ^(2) + 17 x +7 is perfect square ...

    Text Solution

    |

  9. Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the root...

    Text Solution

    |

  10. The number of real values of 'a' for which the largest value of the fu...

    Text Solution

    |

  11. The number of all values of n, (whre n is a whole number ) for which t...

    Text Solution

    |

  12. The number of negative intergral values of m for which the expression ...

    Text Solution

    |

  13. If the expression a x^4+b x^3-x^2+2x+3 has remainder 4x+3 when divided...

    Text Solution

    |

  14. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  15. If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

    Text Solution

    |

  16. The expression x^2 + 2xy + ky^2 + 2x + k = 0 can be resolved into two ...

    Text Solution

    |

  17. The curve y=(lambda=1)x^2+2 intersects the curve y=lambdax+3 in exactl...

    Text Solution

    |

  18. Find the number of integral vaues of 'a' for which the range of functi...

    Text Solution

    |

  19. When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1)...

    Text Solution

    |

  20. Let p(x)=0 be a polynomial equation of the least possible degree, with...

    Text Solution

    |

  21. The range of value's of k for which the equation 2 cos^(4) x - sin^(4...

    Text Solution

    |