Home
Class 12
MATHS
If alpha, beta and gamma are three ral r...

If `alpha, beta and gamma` are three ral roots of the equatin `x ^(3) -6x ^(2)+5x-1 =0,` then the value of `alpha ^(4) + beta ^(4) + gamma ^(4)` is:

A

250

B

650

C

150

D

950

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha^4 + \beta^4 + \gamma^4 \) given that \( \alpha, \beta, \gamma \) are the roots of the cubic equation \( x^3 - 6x^2 + 5x - 1 = 0 \). ### Step 1: Identify the coefficients and apply Vieta's formulas From the given equation \( x^3 - 6x^2 + 5x - 1 = 0 \), we can identify the coefficients: - \( a = 1 \) - \( b = -6 \) - \( c = 5 \) - \( d = -1 \) Using Vieta's formulas, we have: - \( \alpha + \beta + \gamma = 6 \) (sum of roots) - \( \alpha\beta + \beta\gamma + \gamma\alpha = 5 \) (sum of products of roots taken two at a time) - \( \alpha\beta\gamma = 1 \) (product of roots) ### Step 2: Calculate \( \alpha^2 + \beta^2 + \gamma^2 \) We can find \( \alpha^2 + \beta^2 + \gamma^2 \) using the identity: \[ \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha) \] Substituting the values we have: \[ \alpha^2 + \beta^2 + \gamma^2 = 6^2 - 2 \cdot 5 = 36 - 10 = 26 \] ### Step 3: Calculate \( \alpha^4 + \beta^4 + \gamma^4 \) Next, we use the identity: \[ \alpha^4 + \beta^4 + \gamma^4 = (\alpha^2 + \beta^2 + \gamma^2)^2 - 2(\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2) \] We already found \( \alpha^2 + \beta^2 + \gamma^2 = 26 \), so we need to calculate \( \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 \). ### Step 4: Calculate \( \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 \) Using the identity: \[ \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = (\alpha\beta + \beta\gamma + \gamma\alpha)^2 - 2\alpha\beta\gamma(\alpha + \beta + \gamma) \] Substituting the known values: \[ \alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2 = 5^2 - 2 \cdot 1 \cdot 6 = 25 - 12 = 13 \] ### Step 5: Substitute back to find \( \alpha^4 + \beta^4 + \gamma^4 \) Now we can substitute back into the equation for \( \alpha^4 + \beta^4 + \gamma^4 \): \[ \alpha^4 + \beta^4 + \gamma^4 = 26^2 - 2 \cdot 13 \] Calculating this gives: \[ \alpha^4 + \beta^4 + \gamma^4 = 676 - 26 = 650 \] ### Final Answer Thus, the value of \( \alpha^4 + \beta^4 + \gamma^4 \) is \( \boxed{650} \).
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|23 Videos
  • PROBABILITY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of the equation x^(3) + x + 1 = 0 , then the value of alpha^(3) + beta^(3) + gamma^(3) , is

If alpha , beta , gamma are the roots of the equation x^3 -6x^2 +11 x +6=0 then sum alpha^2 beta =

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of alpha^(2)beta+alpha^(2)gamma+beta^(2)alpha+beta^(2)gamma+gamma^(2)alpha+gamma^(2)beta is equal to

If alpha, beta and gamma are the roots of the equation x^(3) + 3x^(2) - 24x + 1 = 0 then find the value of (3sqrt(alpha)+3sqrt(beta)+ 3sqrt(gamma)).

If alpha, beta and gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 , then the value of (alphabeta)/(gamma)+(betagamma)/(alpha)+(gammaalpha)/(beta) is equal to

If alpha , beta , gamma are the roots of the equation x^3 +4x^2 -5x +3=0 then sum (1)/( alpha^2 beta^2)=

If alpha, beta ,gamma are the roots of the equation x ^(3) + 2x ^(2) - x+1 =0, then vlaue of ((2- alpha )(2-beta) (2-gamma))/((2+ alpha ) (2+ beta ) (2 + gamma)) is :

If alpha,beta,gamma,sigma are the roots of the equation x^4+4x^3-6x^2+7x-9=0, then the value of (1+alpha^2)(1+beta^2)(1+gamma^2)(1+sigma^2) is a. 9 b. 11 c. 13 d. 5

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

VIKAS GUPTA (BLACK BOOK) ENGLISH-QUADRATIC EQUATIONS -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If alpha, beta and gamma are three ral roots of the equatin x ^(3) -6x...

    Text Solution

    |

  2. Let f (x) =ax ^(2) + bx+ c where a,b,c are integers. If sin ""pi/7. si...

    Text Solution

    |

  3. Let a, b, c, d be distinct integers such that the equation (x - a) (x ...

    Text Solution

    |

  4. Consider the equation (x^2 + x + 1)^2-(m-3)(x^2 + x + 1) +m=0--(1), w...

    Text Solution

    |

  5. The number of positive integral values of , m le 16 for which the equa...

    Text Solution

    |

  6. If the equation (m^(2) -12 )x^(4) -8x ^(2)-4=0 has no real roots, then...

    Text Solution

    |

  7. The least positive integral value of 'x' satisfying (e^x-2)(sin(x+pi/...

    Text Solution

    |

  8. The integral values of x for which x ^(2) + 17 x +7 is perfect square ...

    Text Solution

    |

  9. Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the root...

    Text Solution

    |

  10. The number of real values of 'a' for which the largest value of the fu...

    Text Solution

    |

  11. The number of all values of n, (whre n is a whole number ) for which t...

    Text Solution

    |

  12. The number of negative intergral values of m for which the expression ...

    Text Solution

    |

  13. If the expression a x^4+b x^3-x^2+2x+3 has remainder 4x+3 when divided...

    Text Solution

    |

  14. The smallest value of k for which both roots of the equation x^(2)-8kx...

    Text Solution

    |

  15. If x ^(2) -3x+2 is a factor of x ^(4) -px ^(2) +q=0, then p+q=

    Text Solution

    |

  16. The expression x^2 + 2xy + ky^2 + 2x + k = 0 can be resolved into two ...

    Text Solution

    |

  17. The curve y=(lambda=1)x^2+2 intersects the curve y=lambdax+3 in exactl...

    Text Solution

    |

  18. Find the number of integral vaues of 'a' for which the range of functi...

    Text Solution

    |

  19. When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1)...

    Text Solution

    |

  20. Let p(x)=0 be a polynomial equation of the least possible degree, with...

    Text Solution

    |

  21. The range of value's of k for which the equation 2 cos^(4) x - sin^(4...

    Text Solution

    |