Home
Class 12
MATHS
If a lt 0, then the value of x satisfyi...

If ` a lt 0,` then the value of x satisfying `x ^(2)-2a|x-a| -3a ^(2)=0` is/are

A

`a (1- sqrt2)`

B

`a (1+ sqrt2)`

C

`a (-1 -sqrt6 )`

D

`a(-1+sqrt6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 2a|x-a| - 3a^2 = 0 \) given that \( a < 0 \), we can break it down into two cases based on the definition of the absolute value. ### Step 1: Identify Cases for Absolute Value The absolute value \( |x-a| \) can be expressed in two cases: - **Case 1:** \( x - a \geq 0 \) (i.e., \( x \geq a \)) implies \( |x-a| = x-a \) - **Case 2:** \( x - a < 0 \) (i.e., \( x < a \)) implies \( |x-a| = -(x-a) = a-x \) ### Step 2: Solve Case 1 In Case 1, substituting \( |x-a| = x-a \) into the equation gives: \[ x^2 - 2a(x-a) - 3a^2 = 0 \] Simplifying this: \[ x^2 - 2ax + 2a^2 - 3a^2 = 0 \] \[ x^2 - 2ax - a^2 = 0 \] ### Step 3: Apply the Quadratic Formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1, b = -2a, c = -a^2 \): \[ x = \frac{-(-2a) \pm \sqrt{(-2a)^2 - 4 \cdot 1 \cdot (-a^2)}}{2 \cdot 1} \] \[ x = \frac{2a \pm \sqrt{4a^2 + 4a^2}}{2} \] \[ x = \frac{2a \pm \sqrt{8a^2}}{2} \] \[ x = \frac{2a \pm 2a\sqrt{2}}{2} \] \[ x = a(1 \pm \sqrt{2}) \] ### Step 4: Analyze Roots from Case 1 The roots from Case 1 are: 1. \( x_1 = a(1 + \sqrt{2}) \) 2. \( x_2 = a(1 - \sqrt{2}) \) Since \( a < 0 \): - \( x_1 = a(1 + \sqrt{2}) < 0 \) (as \( 1 + \sqrt{2} > 0 \)) - \( x_2 = a(1 - \sqrt{2}) \) (Here, \( 1 - \sqrt{2} < 0 \) since \( \sqrt{2} > 1 \)) Thus, both roots are negative, but we need to check if they satisfy \( x \geq a \). ### Step 5: Solve Case 2 In Case 2, substituting \( |x-a| = a-x \) gives: \[ x^2 - 2a(a-x) - 3a^2 = 0 \] Simplifying this: \[ x^2 + 2a x - 2a^2 - 3a^2 = 0 \] \[ x^2 + 2a x - 5a^2 = 0 \] ### Step 6: Apply the Quadratic Formula for Case 2 Using the quadratic formula: Here, \( a = 1, b = 2a, c = -5a^2 \): \[ x = \frac{-2a \pm \sqrt{(2a)^2 - 4 \cdot 1 \cdot (-5a^2)}}{2 \cdot 1} \] \[ x = \frac{-2a \pm \sqrt{4a^2 + 20a^2}}{2} \] \[ x = \frac{-2a \pm \sqrt{24a^2}}{2} \] \[ x = \frac{-2a \pm 2a\sqrt{6}}{2} \] \[ x = -a(1 \mp \sqrt{6}) \] ### Step 7: Analyze Roots from Case 2 The roots from Case 2 are: 1. \( x_3 = -a(1 + \sqrt{6}) \) 2. \( x_4 = -a(1 - \sqrt{6}) \) Since \( a < 0 \): - \( x_3 = -a(1 + \sqrt{6}) > 0 \) (as \( 1 + \sqrt{6} > 0 \)) - \( x_4 = -a(1 - \sqrt{6}) < 0 \) (as \( 1 - \sqrt{6} < 0 \)) ### Conclusion The valid solutions satisfying \( x \geq a \) are: 1. From Case 1: \( x = a(1 - \sqrt{2}) \) (valid since \( x < a \)) 2. From Case 2: \( x = -a(1 + \sqrt{6}) \) (valid since \( x > 0 \)) Thus, the values of \( x \) satisfying the equation are: - \( x = a(1 - \sqrt{2}) \) - \( x = -a(1 + \sqrt{6}) \)
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|23 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|4 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • PROBABILITY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

The value of x satisfying x^2 +5x + 6 = 0 is

The value of x satisfying |(x^(2)-1)/(x^(2)+x+1)| lt 1 , are :

How many integer value of x satisfy 5 + 2 |2x -3| lt 19 ?

Which of the following are the real values of x that satisfy the equation 2x ^(2) -5x -2=0 ?

If x^(3) + 2x-3 = 0 then then number of real values of 'x' satisfying the equation is :

Find the number of values of x satisfying int_(0)^(x)t^(2)sin (x-t)dt=x^(2) in [0, 100] .

Find all real values of x which satisfy x^2-3x+2>0a n dx^2-2x-4lt=0.

If exp [(sin^(2)x+sin^(4) x +sin^(6)x+.... oo)" In" 2] satisfies the equation y^(2)-9y+8=0 , then the value of (cos x )/( cos x+ sin x ),0 lt x lt (pi)/(2) , is

Number of intergal values of x satisfying the inequality (x^2+6x-7)/(|x+2||x+3|) lt 0 is

Number of intergral value of x satisfying the inequality (x^(2) + 6x - 7)/(|x + 4|) lt 0 is :

VIKAS GUPTA (BLACK BOOK) ENGLISH-QUADRATIC EQUATIONS -EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)
  1. Let f (x) =x ^(2) -4x +c AA x in R, where c is a real constant, then w...

    Text Solution

    |

  2. If 0 lt a lt b lt c and the roots alpha,beta of the equation ax^2 +...

    Text Solution

    |

  3. If x satisfies |x-1| + |x-2|+|x-3|gt6, then : i)x ∈ (−∞,1) ii)x ∈...

    Text Solution

    |

  4. If both roots of the quadratic equation ax ^(2)+x+b-a =0 are non real ...

    Text Solution

    |

  5. If a,b are two numbers such that a ^(2) +b^(2) =7 and a ^(3) + b^(3) =...

    Text Solution

    |

  6. The number of non-negative integral ordered pair(s) (x,y) for which (x...

    Text Solution

    |

  7. If alpha, beta, gamma and delta are the roots of the equation x ^(4) -...

    Text Solution

    |

  8. The value of 'k' for which roots of the equation 4x^2-2x+k=0 are comp...

    Text Solution

    |

  9. If a,b,c in R, then for which of the following graphs of the quadrati...

    Text Solution

    |

  10. If the equation ax^(2) + bx + c = 0, a,b, c, in R have non -real ro...

    Text Solution

    |

  11. If alpha and beta are the roots of the equation ax ^(2) + bx + c=0,a,b...

    Text Solution

    |

  12. The equation cos ^(2) x - sin x+lamda = 0, x in (0, pi//2) has roots t...

    Text Solution

    |

  13. If the equation ln (x^(2) +5x ) -ln (x+a +3)=0 has exactly one solutio...

    Text Solution

    |

  14. The number of non-negative integral ordered pair(s) (x,y) for which (x...

    Text Solution

    |

  15. If a lt 0, then the value of x satisfying x ^(2)-2a|x-a| -3a ^(2)=0 i...

    Text Solution

    |

  16. If 0 lt a lt b lt c and the roots alpha,beta of the equation ax^2 +...

    Text Solution

    |

  17. Solve : | x - 1| + |x - 2| + | x - 3 | gt 6

    Text Solution

    |

  18. The value of 'k' for which roots of the equation 4x^2-2x+k=0 are comp...

    Text Solution

    |

  19. Let alpha , beta, gamma, delta are roots of x ^(4) -12x ^(3) +lamda x ...

    Text Solution

    |

  20. If the points ((a^3)/((a-1))),(((a^2-3))/((a-1))),((b^3)/(b-1)),(((b^2...

    Text Solution

    |