Home
Class 12
MATHS
The equation x ^(4) -2x ^(3)-3x^2 + 4x -...

The equation `x ^(4) -2x ^(3)-3x^2 + 4x -1=0` has four distinct real roots `x _(1), x _(2), x _(3), x_(4)` such that `x _(1) lt x _(2) lt x _(3)lt x _(4)` and product of two roots is unity, then : `x _(2)^(3) + x _(4)^(3)=`

A

`(2+5 sqrt5)/(8)`

B

`-4`

C

`(27 sqrt5 + 5)/(4)`

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^4 - 2x^3 - 3x^2 + 4x - 1 = 0 \) and find \( x_2^3 + x_4^3 \) given that the product of two roots is unity, we can follow these steps: ### Step 1: Factor the Polynomial We start with the polynomial: \[ x^4 - 2x^3 - 3x^2 + 4x - 1 = 0 \] We can try to factor it into two quadratic equations. Let's assume: \[ (x^2 + ax + b)(x^2 + cx + d) = 0 \] By expanding and comparing coefficients, we can find suitable values for \( a, b, c, \) and \( d \). ### Step 2: Set Up the Quadratic Equations After some trials, we can factor the polynomial as: \[ (x^2 - 3x + 1)(x^2 + x - 1) = 0 \] ### Step 3: Solve Each Quadratic Equation Now we solve each quadratic equation separately. 1. For \( x^2 - 3x + 1 = 0 \): Using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{3 \pm \sqrt{9 - 4}}{2} = \frac{3 \pm \sqrt{5}}{2} \] This gives us the roots: \[ x_3 = \frac{3 + \sqrt{5}}{2}, \quad x_2 = \frac{3 - \sqrt{5}}{2} \] 2. For \( x^2 + x - 1 = 0 \): Again using the quadratic formula: \[ x = \frac{-1 \pm \sqrt{1 + 4}}{2} = \frac{-1 \pm \sqrt{5}}{2} \] This gives us the roots: \[ x_1 = \frac{-1 - \sqrt{5}}{2}, \quad x_4 = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Order the Roots Now we have: \[ x_1 < x_2 < x_3 < x_4 \] where: - \( x_1 = \frac{-1 - \sqrt{5}}{2} \) - \( x_2 = \frac{3 - \sqrt{5}}{2} \) - \( x_3 = \frac{3 + \sqrt{5}}{2} \) - \( x_4 = \frac{-1 + \sqrt{5}}{2} \) ### Step 5: Calculate \( x_2^3 + x_4^3 \) We need to find \( x_2^3 + x_4^3 \). We can use the identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \( a = x_2 \) and \( b = x_4 \). 1. Calculate \( x_2 + x_4 \): \[ x_2 + x_4 = \frac{3 - \sqrt{5}}{2} + \frac{-1 + \sqrt{5}}{2} = \frac{2}{2} = 1 \] 2. Calculate \( x_2 x_4 \): \[ x_2 x_4 = \left(\frac{3 - \sqrt{5}}{2}\right)\left(\frac{-1 + \sqrt{5}}{2}\right) = \frac{(3)(-1) + (3)(\sqrt{5}) - (\sqrt{5})(1) + (\sqrt{5})(\sqrt{5})}{4} = \frac{-3 + 2\sqrt{5} + 5}{4} = \frac{2 + 2\sqrt{5}}{4} = \frac{1 + \sqrt{5}}{2} \] 3. Calculate \( x_2^2 + x_4^2 \): \[ x_2^2 + x_4^2 = (x_2 + x_4)^2 - 2x_2 x_4 = 1^2 - 2 \cdot \frac{1 + \sqrt{5}}{2} = 1 - (1 + \sqrt{5}) = -\sqrt{5} \] 4. Now substitute into the identity: \[ x_2^3 + x_4^3 = (x_2 + x_4)((x_2^2 + x_4^2) - x_2 x_4) = 1 \left(-\sqrt{5} - \frac{1 + \sqrt{5}}{2}\right) \] Simplifying: \[ = -\sqrt{5} - \frac{1 + \sqrt{5}}{2} = -\frac{2\sqrt{5}}{2} - \frac{1 + \sqrt{5}}{2} = -\frac{2\sqrt{5} + 1 + \sqrt{5}}{2} = -\frac{3\sqrt{5} + 1}{2} \] ### Final Answer Thus, the value of \( x_2^3 + x_4^3 \) is: \[ -\frac{3\sqrt{5} + 1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|4 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|42 Videos
  • PROBABILITY

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise -5 : Subjective Type problems|11 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos

Similar Questions

Explore conceptually related problems

The equation x ^(4) -2x ^(3)-3x^2 + 4x -1=0 has four distinct real roots x _(1), x _(2), x _(3), x_(4) such that x _(1) lt x _(2) lt x _(3)lt x _(4) and product of two roots is unity, then : x _(1)x _(2) +x_(1)x_(3) + x_(2) x _(4) +x_(3) x _(4)=

The roots of the equation x^(4)-2x^(3)+x-380=0 are

The equation (x^(2)+3x+4)^(2)+3(x^(2)+3x+4)+4=x has

3(1 - x ) lt 2 (x + 4)

The equation (2x^(2))/(x-1)-(2x +7)/(3) +(4-6x)/(x-1) +1=0 has the roots-

If x_(1)+ x_(2)=3, x_(3)+x_(4)=12 and x_(1), x_(2), x_(3), x_(4) are in increasing G.P then the equation having x_(1), x_(2) as roots is

Solve the equation x^4 +4x^3 +5x^2 +2x -2=0 given that -1 + sqrt(-1 ) is a root

The number of distinct real roots of x^4 - 4 x^3 + 12 x^2 + x - 1 = 0 is :

If 2 is a root of the equation x^4+2x^3-3x^2+kx-4=0 , then k=

If the median of the data x_(1), x_(2), x_(3), x_(4), x_(5),x_(6), x_(7), x_(8) " is " alpha and x_(1) lt x_(2) lt x_(3) lt x_(4) lt x_(5) lt x_(6) lt x_(7) lt x_(8) , then the median of x_(3), x_(4), x_(5), x_(6) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-QUADRATIC EQUATIONS -EXERCISE (COMPREHENSION TYPE PROBLEMS)
  1. If alpha, beta the roots of equation (k + 1 )x ^(2) -(20k +14) x + 91...

    Text Solution

    |

  2. Let f (x) =x ^(2) + bx + c AA xin R, (b,c, in R) attains its least va...

    Text Solution

    |

  3. Let f (x) =x ^(2) + bx + c AA in R, (b,c, in R) attains its least val...

    Text Solution

    |

  4. Let f (x) =x ^(2) + bx + c AA in R, (b,c, in R) attains its least val...

    Text Solution

    |

  5. Consider the equation log2 ^2 x- 4 log2 x- m^2 -2m-13=0,m in R.Let the...

    Text Solution

    |

  6. Consider the equation log (2)^(2) x -4 log (2)x-m^(2) -2m -13=0, m in ...

    Text Solution

    |

  7. The equation x ^(4) -2x ^(3)-3x^2 + 4x -1=0 has four distinct real roo...

    Text Solution

    |

  8. The equation x ^(4) -2x ^(3)-3x^2 + 4x -1=0 has four distinct real roo...

    Text Solution

    |

  9. Let f(x) polynomial of degree 5 with leading coefficient unity such th...

    Text Solution

    |

  10. Let f (x) be a polynomial of degree 5 with leading coefficient unity,...

    Text Solution

    |

  11. Let f (x) be a polynomial of degree 5 with leading coefficient unity,...

    Text Solution

    |

  12. Consider the cubic equation in x , x ^(3) - x^(2) + (x- x ^(2)) sin th...

    Text Solution

    |

  13. Consider the cubic equation in x , x ^(3) - x^(2) + (x- x ^(2)) sin th...

    Text Solution

    |

  14. Let P (x ) be a quadratic polynomial with real coefficients such that...

    Text Solution

    |

  15. Let P (x ) be a quadratic polynomial with real coefficients such that...

    Text Solution

    |

  16. Let t be a ral number satifying 2t ^(2) -9t ^(2) + 30 -lamda =0 where ...

    Text Solution

    |

  17. Let t be a ral number satifying 2t ^(2) -9t ^(2) + 30 -lamda =0 where ...

    Text Solution

    |

  18. Let t be a ral number satifying 2t ^(2) -9t ^(2) + 30 -lamda =0 where ...

    Text Solution

    |

  19. Consider a quadratic expression f (x) =tx^(2) -(2t -1) x+ (5x -1) If...

    Text Solution

    |

  20. Consider a quadratic expression f (x) =tx^(2) -(2t -1) x+ (5x -1) I...

    Text Solution

    |