Home
Class 12
MATHS
The limit of (1)/(n ^(4)) sum (k =1) ^(n...

The limit of `(1)/(n ^(4)) sum _(k =1) ^(n) k (k +2) (k +4) as n to oo` is equal to `(1)/(lamda),` then `lamda =`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit of the expression \(\frac{1}{n^4} \sum_{k=1}^{n} k(k+2)(k+4)\) as \(n\) approaches infinity, we will follow these steps: ### Step 1: Expand the expression inside the summation We start by expanding \(k(k+2)(k+4)\): \[ k(k+2)(k+4) = k(k^2 + 6k + 8) = k^3 + 6k^2 + 8k \] ### Step 2: Write the summation Now we can rewrite the summation: \[ \sum_{k=1}^{n} k(k+2)(k+4) = \sum_{k=1}^{n} (k^3 + 6k^2 + 8k) \] This can be separated into three different summations: \[ \sum_{k=1}^{n} k^3 + 6\sum_{k=1}^{n} k^2 + 8\sum_{k=1}^{n} k \] ### Step 3: Use formulas for summations We will use the formulas for the sums of powers of integers: - \(\sum_{k=1}^{n} k = \frac{n(n+1)}{2}\) - \(\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}\) - \(\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2\) Substituting these formulas into our expression: \[ \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2 \] \[ 6\sum_{k=1}^{n} k^2 = 6 \cdot \frac{n(n+1)(2n+1)}{6} = n(n+1)(2n+1) \] \[ 8\sum_{k=1}^{n} k = 8 \cdot \frac{n(n+1)}{2} = 4n(n+1) \] ### Step 4: Combine the results Now, we combine all these results: \[ \sum_{k=1}^{n} k(k+2)(k+4) = \left(\frac{n(n+1)}{2}\right)^2 + n(n+1)(2n+1) + 4n(n+1) \] ### Step 5: Simplify the expression Now we need to simplify this expression. The leading term will dominate as \(n\) approaches infinity: \[ \left(\frac{n(n+1)}{2}\right)^2 = \frac{n^2(n+1)^2}{4} \approx \frac{n^4}{4} \] The other terms will grow slower than \(n^4\) and can be ignored in the limit: \[ n(n+1)(2n+1) \approx 2n^3 \quad \text{and} \quad 4n(n+1) \approx 4n^2 \] ### Step 6: Substitute back into the limit Now substituting back into the limit: \[ \lim_{n \to \infty} \frac{1}{n^4} \left( \frac{n^4}{4} + \text{lower order terms} \right) = \lim_{n \to \infty} \left( \frac{1}{4} + \frac{\text{lower order terms}}{n^4} \right) \] As \(n\) approaches infinity, the lower order terms divided by \(n^4\) will approach 0. Thus, we have: \[ \lim_{n \to \infty} \frac{1}{n^4} \sum_{k=1}^{n} k(k+2)(k+4) = \frac{1}{4} \] ### Step 7: Relate to \(\lambda\) We are given that this limit is equal to \(\frac{1}{\lambda}\), so: \[ \frac{1}{\lambda} = \frac{1}{4} \implies \lambda = 4 \] ### Final Answer Thus, the value of \(\lambda\) is: \[ \lambda = 4 \]
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (MATCHING TYPE PROBLEMS)|4 Videos
  • QUADRATIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|45 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos

Similar Questions

Explore conceptually related problems

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Let f(n)= sum_(k=1)^(n) k^2 ^"(n )C_k)^ 2 then the value of f(5) equals

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

The value of sum_(r=1)^(n+1)(sum_(k=1)^n "^k C_(r-1)) ( where r ,k ,n in N) is equal to a. 2^(n+1)-2 b. 2^(n+1)-1 c. 2^(n+1) d. none of these

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

If a,b in R^(+) then find Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn)) is equal to

If |a| lt 1, b = sum_(k=1)^(oo) (a^(k))/(k) rArr a=

VIKAS GUPTA (BLACK BOOK) ENGLISH-SEQUENCE AND SERIES -EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. The sum of all digits of n for which sum (r =1) ^(n ) r 2 ^(r ) = 2+2^...

    Text Solution

    |

  2. If lim ( n to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

    Text Solution

    |

  3. The value of sum (r =1) ^(oo) (8r)/(4r ^(4) +1) is equal to :

    Text Solution

    |

  4. If three non-zero distinct real numbers form an arithmatic progression...

    Text Solution

    |

  5. The sum of the fourth and twelfth term of an arithmetic progression is...

    Text Solution

    |

  6. In an increasing sequence of four positive integers, the first 3 terms...

    Text Solution

    |

  7. The limit of (1)/(n ^(4)) sum (k =1) ^(n) k (k +2) (k +4) as n to oo i...

    Text Solution

    |

  8. Which is the last digit of 1+2+3+……+ n if the last digit of 1 ^(3) + ...

    Text Solution

    |

  9. There distinct positive numbers, a,b,c are in G.P. while log (c) a, lo...

    Text Solution

    |

  10. The numbers 1/3, 1/3 log (x) y, 1/3 log (y) z, 1/7 log (x) x are in H...

    Text Solution

    |

  11. If sum ( k =1) ^(oo) (k^(2))/(3 ^(k))=p/q, where p and q are relativel...

    Text Solution

    |

  12. The sum of the terms of an infinitely decreassing Geometric Progressio...

    Text Solution

    |

  13. A cricketer has to score 4500 runs. Let a (n) denotes the number of ru...

    Text Solution

    |

  14. If x=10 sum(r=3) ^(100) (1)/((r ^(2) -4)), then [x]= (where [.] deno...

    Text Solution

    |

  15. Let f (n)=(4n + sqrt(4n ^(2) -1))/( sqrt(2n +1 )+sqrt(2n-1)),n in N th...

    Text Solution

    |

  16. Find the sum of series 1+1/2+1/3+1/4+1/6+1/8+1/9+1/12+…… oo, where the...

    Text Solution

    |

  17. Let a (1), a(2), a(3),…….., a(n) be real numbers in arithmatic progres...

    Text Solution

    |

  18. Let the roots of the equation 24 x ^(3) -14x ^(2) + kx +3=0 form a geo...

    Text Solution

    |

  19. How many ordered pair (s) satisfy log (x ^(3) + (1)/(3) y ^(3) + (1)/(...

    Text Solution

    |

  20. The value of xyz is 55 or (343)/(55) according as the series a,x,y,z,b...

    Text Solution

    |