Home
Class 12
MATHS
Let g(x)= ax + b , where a lt 0 and g...

Let `g(x)= ax + b ` , where ` a lt 0 ` and g is defined from [1,3] onto [0,2] then the value of ` cot ( cos^(-1) (|sin x | + |cos x|) + sin^(-1)(-|cos x | - |sinx|)) ` is equal to :

A

`g(1)`

B

`g(2)`

C

`g(3)`

D

`g(1) + g(3) `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|12 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|4 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1

If sin^(-1)x in (0, (pi)/(2)) , then the value of tan((cos^(-1)(sin(cos^(-1)x))+sin^(-1)(cos(sin^(-1)x)))/(2)) is :

Write the value of cos(sin^(-1)x+cos^(-1)x) , |x|lt=1 .

Solve cos^(-1) (cos x) gt sin^(-1) (sin x), x in [0, 2pi]

Let f(x) = min ( tan^(-1) x, cot^(-1)x) " and " h ( x) = f ( x + 2) - pi //3 ". Let " x_(1), x_(2) ( "where " x_(1) lt x_(2)) be the integers in the range of h (x) , then the value of ( cos^(-1) ( cos x_(1)) + sin ^(-1) ( sin x_2)) is equal to

If cos(sin^(-1)'2/5 + cos^(-1)x) = 0 , then x is equal to

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

If f ( x) = cos^(-1) ( cos ( x + 1) ) " and " g(x) = sin ^(-1) ( sin (x + 2)) , then

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1