Home
Class 12
MATHS
The points A(0, 0), B(cos alpha, sin alp...

The points `A(0, 0), B(cos alpha, sin alpha) and C(cos beta, sin beta)` are the vertices of a right angled triangle if :

A

(a) `sin((alpha-beta)/(2))=(1)/(sqrt(2))`

B

(b) `cos((alpha-beta)/(2))=-(1)/(sqrt(2))`

C

(c) `cos((alpha-beta)/(2))=(1)/(sqrt(2))`

D

(d) `sin((alpha-beta)/(2))=-(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the points \( A(0, 0) \), \( B(\cos \alpha, \sin \alpha) \), and \( C(\cos \beta, \sin \beta) \) form the vertices of a right-angled triangle, we will use the distance formula and the Pythagorean theorem. ### Step 1: Calculate the distances between the points 1. **Distance \( AB \)**: \[ AB = \sqrt{(\cos \alpha - 0)^2 + (\sin \alpha - 0)^2} = \sqrt{\cos^2 \alpha + \sin^2 \alpha} = \sqrt{1} = 1 \] 2. **Distance \( AC \)**: \[ AC = \sqrt{(\cos \beta - 0)^2 + (\sin \beta - 0)^2} = \sqrt{\cos^2 \beta + \sin^2 \beta} = \sqrt{1} = 1 \] 3. **Distance \( BC \)**: \[ BC = \sqrt{(\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2} \] ### Step 2: Apply the Pythagorean theorem For triangle \( ABC \) to be a right triangle, one of the sides must be the hypotenuse. We will assume \( BC \) is the hypotenuse. According to the Pythagorean theorem: \[ BC^2 = AB^2 + AC^2 \] Substituting the values we calculated: \[ BC^2 = 1^2 + 1^2 = 2 \] Thus, \[ BC = \sqrt{2} \] ### Step 3: Set up the equation for \( BC \) Now we need to equate the expression for \( BC \) to \( \sqrt{2} \): \[ \sqrt{(\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2} = \sqrt{2} \] ### Step 4: Square both sides Squaring both sides gives: \[ (\cos \alpha - \cos \beta)^2 + (\sin \alpha - \sin \beta)^2 = 2 \] ### Step 5: Expand and simplify Expanding the left-hand side: \[ \cos^2 \alpha - 2\cos \alpha \cos \beta + \cos^2 \beta + \sin^2 \alpha - 2\sin \alpha \sin \beta + \sin^2 \beta = 2 \] Using the identity \( \cos^2 x + \sin^2 x = 1 \): \[ 1 - 2\cos \alpha \cos \beta + 1 - 2\sin \alpha \sin \beta = 2 \] This simplifies to: \[ 2 - 2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) = 2 \] ### Step 6: Rearranging the equation Rearranging gives: \[ -2(\cos \alpha \cos \beta + \sin \alpha \sin \beta) = 0 \] Thus, \[ \cos \alpha \cos \beta + \sin \alpha \sin \beta = 0 \] ### Step 7: Use the cosine of angle difference identity This can be rewritten using the cosine of the difference of angles: \[ \cos(\alpha - \beta) = 0 \] ### Conclusion The points \( A(0, 0) \), \( B(\cos \alpha, \sin \alpha) \), and \( C(\cos \beta, \sin \beta) \) form the vertices of a right-angled triangle if: \[ \alpha - \beta = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|4 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos
  • TRIGONOMETRIC EQUATIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|9 Videos

Similar Questions

Explore conceptually related problems

If A(cos alpha,sin alpha), B(cos beta, sin beta), C(cosgamma,sin gamma) are vertices of Delta ABC having ortho centre at origin then find the value of sumcos(alpha-beta).

Find the area of the triangle whose vertices are : (a cos alpha, b sin alpha), (a cos beta, b sin beta), (a cos gamma, b sin gamma)

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If cos(alpha + beta)=0 , then sin (alpha-beta) can be reduced to

Given that sin alpha = (sqrt(3))/(2) and cos beta = 0 , then the value of beta - alpha is

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

If sin alpha=A sin(alpha+beta),Ane0 , then The value of tan beta is

cos(alpha+beta)+sin(alpha-beta)=0"and"tanbeta=1/2009 then value of tan3α

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is