Home
Class 12
MATHS
If A(cos alpha, sin alpha), B(sin alpha...

If `A(cos alpha, sin alpha), B(sin alpha, -cos alpha), C(1,2)` are the vertices of a triangle, then as `alpha` varies the locus of centroid of the `DeltaABC` is a circle whose radius is :

A

`(2sqrt(2))/(3)`

B

`sqrt((4)/(3))`

C

`(2)/(3)`

D

`sqrt((2)/(9))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the radius of the circle that represents the locus of the centroid of triangle ABC, we will follow these steps: ### Step 1: Identify the vertices of the triangle The vertices of triangle ABC are given as: - \( A(\cos \alpha, \sin \alpha) \) - \( B(\sin \alpha, -\cos \alpha) \) - \( C(1, 2) \) ### Step 2: Find the coordinates of the centroid The centroid \( G(h, k) \) of triangle ABC can be calculated using the formula: \[ G(h, k) = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \] Substituting the coordinates of points A, B, and C: \[ h = \frac{\cos \alpha + \sin \alpha + 1}{3} \] \[ k = \frac{\sin \alpha - \cos \alpha + 2}{3} \] ### Step 3: Rearrange the equations for h and k We can rearrange the equations for \( h \) and \( k \): 1. From \( h \): \[ 3h = \cos \alpha + \sin \alpha + 1 \implies \cos \alpha + \sin \alpha = 3h - 1 \] 2. From \( k \): \[ 3k = \sin \alpha - \cos \alpha + 2 \implies \sin \alpha - \cos \alpha = 3k - 2 \] ### Step 4: Square and add the two equations Now we square both equations and add them: \[ (\cos \alpha + \sin \alpha)^2 + (\sin \alpha - \cos \alpha)^2 = (3h - 1)^2 + (3k - 2)^2 \] Expanding both sides: - Left side: \[ \cos^2 \alpha + 2\cos \alpha \sin \alpha + \sin^2 \alpha + \sin^2 \alpha - 2\cos \alpha \sin \alpha + \cos^2 \alpha = 1 + 1 = 2 \] - Right side: \[ (3h - 1)^2 + (3k - 2)^2 \] ### Step 5: Set the equation Now we have: \[ 2 = (3h - 1)^2 + (3k - 2)^2 \] ### Step 6: Rearranging to the standard form of a circle Rearranging gives: \[ (3h - 1)^2 + (3k - 2)^2 = 2 \] This represents a circle centered at \( (1/3, 2/3) \) with radius \( \sqrt{2} \). ### Step 7: Find the radius The radius \( r \) of the circle can be found from the equation: \[ r = \sqrt{2} \] ### Conclusion Thus, the radius of the circle representing the locus of the centroid of triangle ABC is: \[ \boxed{\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 2 : One or More than One Answer is/are Correct|10 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 3 : Comprehension Type Problems|8 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I , find the value of alpha .

If A=[[cosalpha, -sin alpha] , [sin alpha, cos alpha]] then A+A'=I then alpha=

The points A(0, 0), B(cos alpha, sin alpha) and C(cos beta, sin beta) are the vertices of a right angled triangle if :

If A=[[cos alpha,-sin alpha],[sin alpha,cos alpha]], then for what value of alpha is A an identity matrix?

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

If sin alpha -cos alpha = m , then the value of sin^6alpha+cos^6alpha in terms of m is

cos alpha cos 2 alpha cos 4 alpha cos 8 alpha = (1)/(16), if alpha = 24 ^(@)