Home
Class 12
MATHS
If the length of the normal for each po...

If the length of the normal for each point on a curve to equal to the radius vector, then the curve :

A

is a circle passing through origin

B

is a circle having centre at origin and radius gt 0

C

is a circle having centre on x-axis and touching y-axis

D

is a circle having centre on y-axis and touching x-axis

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 2 : One or More than One Answer is/are Correct|10 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 3 : Comprehension Type Problems|8 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

If the length of the normal for each point on a curve is equal to the radius vector, then the curve (a) is a circle passing through origin (b) is a circle having centre at origin and radius 0 (c) is a circle having centre on x-axis and touching y-axis (iv) is a circle having centre on y-axis and touching x-axis

A curve y=f(x) has the property that the perpendicular distance of the origin from the normal at any point P of the curve is equal to the distance of the point P from the x-axis. Then the differential equation of the curve

Find the curve for which the length of normal is equal to the radius vector.

Find the curves for which the length of normal is equal to the radius vector.

The curve for which the length of the normal is equal to the length of the radius vector is/are (a) circles (b) rectangular hyperbola (c) ellipses (d) straight lines

The curve for which the length of the normal is equal to the length of the radius vector is/are (a) circles (b) rectangular hyperbola (c) ellipses (d) straight lines

The length of normal at any point to the curve, y=c cosh(x/c) is

The length of the normal at t on the curve x=a(t+sint), y=a(1-cos t), is

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________

The perpendicular from the origin to the tangent at any point on a curve is equal to the abscissa of the point of contact. Also curve passes through the point (1,1). Then the length of intercept of the curve on the x-axis is__________