Home
Class 12
MATHS
If(a,1/a),(b,1/b), (c,1/c) & (d,1/d) are...

If`(a,1/a)`,`(b,1/b)`, `(c,1/c)` & `(d,1/d)` are four distinct points on a circle of radius `4` units, then `abcd` is equal to
(A) `4` (B) `16`
(C) `1` (D) `2`

A

4

B

`1//4`

C

1

D

16

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 2 : One or More than One Answer is/are Correct|10 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 3 : Comprehension Type Problems|8 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

A ,\ B ,\ C ,\ D are four consecutive points on a circle such that A B=C Ddot Prove that A C=B D

If x_1 and x_2 are two distinct roots of the equation acosx+bsinx=c , then tan((x_1+x_2)/2) is equal to (a) a/b (b) b/a (c) c/a (d) a/c

If a=-2 , b=-1 ,then a^(b)-b^(a) is equal to a) -1 b) 0.5 c) -2 d) -1.5

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are non coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If a,b,c and d are four positive real numbers such that abcd=1 , what is the minimum value of (1+a)(1+b)(1+c)(1+d) .

A\ (6,3),\ B(-3,5),\ C(4,-2)\ a n d\ D(x ,3x) are four points. If Delta' D B C :'Delta'A B C=1:2, then x is equal to a. 11/8 b. 8/11 c. 3 d. none of these

Let A-=(-4, 0), B -= (-1, 4). C and D are points which are symmetric to points A and B respectively with respect to y-axis, then area of the quadrilateral ABCD is (A) 8 sq units (B) 12 sq. units (C) 20 sq. units (D) none of these

Let D be the middle point of the side B C of a triangle A B Cdot If the triangle A D C is equilateral, then a^2: b^2: c^2 is equal to 1:4:3 (b) 4:1:3 (c) 4:3:1 (d) 3:4:1

If (x/a)+(y/b)=1 and (x/c)+(y/d)=1 intersect the axes at four concylic points and a^2+c^2=b^2+d^2, then these lines can intersect at, (a , b , c , d >0) (1,1) (b) (1,-1) (2,-2) (d) (3,3)