Home
Class 12
MATHS
Let alpha be a variable parameter, then ...

Let `alpha` be a variable parameter, then the length of the chord of the curve: `(x-sin^-1 alpha)(x-cos^-1 alpha)+(y-sin^-1 alpha)(y+cos^-1 alpha)=0` along the line `x=pi/4` can not be equal to

A

`(pi)/(3)`

B

`(pi)/(6)`

C

`(pi)/(4)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the length of the chord of the given curve along the line \( x = \frac{\pi}{4} \) and determine which length cannot be equal to a certain value. ### Step-by-step Solution: 1. **Substituting \( x = \frac{\pi}{4} \)**: We start with the given equation of the curve: \[ (x - \sin^{-1} \alpha)(x - \cos^{-1} \alpha) + (y - \sin^{-1} \alpha)(y + \cos^{-1} \alpha) = 0 \] We substitute \( x = \frac{\pi}{4} \): \[ \left(\frac{\pi}{4} - \sin^{-1} \alpha\right)\left(\frac{\pi}{4} - \cos^{-1} \alpha\right) + (y - \sin^{-1} \alpha)(y + \cos^{-1} \alpha) = 0 \] 2. **Simplifying the Equation**: Let \( A = \frac{\pi}{4} - \sin^{-1} \alpha \) and \( B = \frac{\pi}{4} - \cos^{-1} \alpha \). The equation becomes: \[ AB + (y - \sin^{-1} \alpha)(y + \cos^{-1} \alpha) = 0 \] Expanding the second term: \[ AB + y^2 + y \cos^{-1} \alpha - y \sin^{-1} \alpha - \sin^{-1} \alpha \cos^{-1} \alpha = 0 \] 3. **Rearranging the Equation**: Rearranging gives us a quadratic in \( y \): \[ y^2 + ( \cos^{-1} \alpha - \sin^{-1} \alpha ) y + (AB - \sin^{-1} \alpha \cos^{-1} \alpha) = 0 \] 4. **Finding the Roots**: Let \( y_1 \) and \( y_2 \) be the roots of this quadratic equation. By Vieta's formulas: - \( y_1 + y_2 = -b/a = -(\cos^{-1} \alpha - \sin^{-1} \alpha) \) - \( y_1 y_2 = c/a = AB - \sin^{-1} \alpha \cos^{-1} \alpha \) 5. **Calculating the Length of the Chord**: The length of the chord is given by: \[ |y_2 - y_1| = \sqrt{(y_1 + y_2)^2 - 4y_1 y_2} \] Substituting the values from Vieta's: \[ |y_2 - y_1| = \sqrt{(-(\cos^{-1} \alpha - \sin^{-1} \alpha))^2 - 4(AB - \sin^{-1} \alpha \cos^{-1} \alpha)} \] 6. **Finding Minimum Value**: We need to analyze the expression to find the minimum value of \( |y_2 - y_1| \). We know: \[ \sin^{-1} \alpha + \cos^{-1} \alpha = \frac{\pi}{2} \] Therefore, we can express \( \cos^{-1} \alpha \) in terms of \( \sin^{-1} \alpha \): \[ \cos^{-1} \alpha = \frac{\pi}{2} - \sin^{-1} \alpha \] 7. **Final Calculation**: After substituting and simplifying, we find that the minimum value of \( |y_2 - y_1| \) is \( \frac{\pi}{2} \). ### Conclusion: The length of the chord cannot be equal to values less than \( \frac{\pi}{2} \). Therefore, the values that cannot be equal to the length of the chord include \( \frac{\pi}{3} \), \( \frac{\pi}{4} \), and \( \frac{\pi}{6} \).
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 3 : Comprehension Type Problems|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 4 : Matching Type Problems|2 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then:

The value of (sin(pi-alpha))/(sin alpha-cos alpha tan.(alpha)/(2))-cos alpha is

Show that : sin^6 alpha+ cos^6 alpha ge 1/4

Find the length of perpendicular from the point (a cos alpha, a sin alpha) to the line x cos alpha+y sin alpha=p .

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

If (sin alpha)^(x)+(cos alpha)^(x) ge 1,0 lt a lt (pi)/(2) then

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

If x sin alpha = y cos alpha, prove that : x/(sec 2alpha) + y/(cosec 2 alpha) = x