Home
Class 12
MATHS
If a="max"{(x+2)^(2)+(y-3)^(2)} and b="m...

If `a="max"{(x+2)^(2)+(y-3)^(2)} and b="min"{(x+2)^(2)+(y-3)^(2)}` where x, y satisfying `x^(2)+y^(2)+8x-10y-40=0` then :

A

`a+b=18`

B

`a+b=158`

C

`a-b=4sqrt(2)`

D

`a-b=72sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum and minimum values of the expression \((x+2)^2 + (y-3)^2\) given the constraint defined by the equation \(x^2 + y^2 + 8x - 10y - 40 = 0\). ### Step-by-Step Solution: 1. **Rewrite the Circle Equation:** We start with the equation: \[ x^2 + y^2 + 8x - 10y - 40 = 0 \] We can complete the square for both \(x\) and \(y\). - For \(x\): \[ x^2 + 8x = (x+4)^2 - 16 \] - For \(y\): \[ y^2 - 10y = (y-5)^2 - 25 \] Substituting these back into the equation gives: \[ (x+4)^2 - 16 + (y-5)^2 - 25 - 40 = 0 \] Simplifying this, we get: \[ (x+4)^2 + (y-5)^2 = 81 \] This represents a circle centered at \((-4, 5)\) with a radius of \(9\). 2. **Identify the Expression to Maximize/Minimize:** We need to maximize and minimize: \[ (x+2)^2 + (y-3)^2 \] 3. **Rewrite the Expression:** We can also rewrite this expression: \[ (x+2)^2 + (y-3)^2 = \left((x+4) - 2\right)^2 + \left((y-5) + 2\right)^2 \] 4. **Geometric Interpretation:** The expression \((x+2)^2 + (y-3)^2\) represents the squared distance from the point \((-2, 3)\) to any point \((x, y)\) on the circle centered at \((-4, 5)\). 5. **Calculate the Distance from the Center to the Point:** The distance from the center of the circle \((-4, 5)\) to the point \((-2, 3)\) is: \[ d = \sqrt{((-2) - (-4))^2 + (3 - 5)^2} = \sqrt{(2)^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2} \] 6. **Finding Maximum and Minimum Distances:** - The maximum distance from \((-2, 3)\) to the circle is: \[ d + r = 2\sqrt{2} + 9 \] - The minimum distance from \((-2, 3)\) to the circle is: \[ |d - r| = |2\sqrt{2} - 9| \] 7. **Calculating Maximum and Minimum Values:** - Maximum value \(a\): \[ a = (d + r)^2 = (2\sqrt{2} + 9)^2 = (2\sqrt{2})^2 + 2 \cdot (2\sqrt{2}) \cdot 9 + 9^2 = 8 + 36\sqrt{2} + 81 = 89 + 36\sqrt{2} \] - Minimum value \(b\): \[ b = (|d - r|)^2 = (9 - 2\sqrt{2})^2 = 81 - 36\sqrt{2} + 8 = 89 - 36\sqrt{2} \] 8. **Final Calculation of \(a + b\):** \[ a + b = (89 + 36\sqrt{2}) + (89 - 36\sqrt{2}) = 178 \] Thus, the final answer is: \[ \boxed{178} \]
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 3 : Comprehension Type Problems|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 4 : Matching Type Problems|2 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

Let xa n dy be real variables satisfying x^2+y^2+8x-10 y-40=0 . Let a=max{sqrt((x+2)^2+(y-3)^2)} and b=min{sqrt((x+2)^2+(y-3)^2)} . Then (a) a+b=18 (b) a+b=sqrt(2) (c) a-b=4sqrt(2) (d) adotb=73

How many integer pairs (x,y) satisfy x^(2) + 4y^(2) -2xy -2x - 4y -8=0 ?

Let x, y be real variable satisfying x^(2) + y^(2) + 8x - 10y - 59 = 0 Let a = max {(x-3)^(2) + (y-4)^(2) and b = min {(x-3)^(2) + (y-4)^(2)) , then a + b + 2010 is ______ .

The number of solutions (x, y) where x and y are integers, satisfying 2x^(2) + 3y^(2) + 2x + 3y=10 is:

Sum of values of x and y satisfying 3^x-4^y=77, 3^(x/2)-2^y=7 is

The two circles x^(2)+y^(2)-2x-2y-7=0 and 3(x^(2)+y^(2))-8x+29y=0

The two circles x^(2)+y^(2)-2x-3=0 and x^(2)+y^(2)-4x-6y-8=0 are such that

Find the centre and the radius of the circles 3x^(2) + 3y^(2) - 8x - 10y + 3 = 0

If (x^(2) + y^(2))/(x^(2) - y^(2)) = 2(1)/(8) , find : (i) (x)/(y) (ii) (x^(3) + y^(3))/(x^(3) - y^(3))

find x and y : 2x+y-5=0 3x+2y-8=0