Home
Class 12
MATHS
Let the diameter of a subset S of the p...

Let the diameter of a subset S of the plane be defined as the maximum of the distance between arbitrary pairs of points of S.
Q. Let `S={(x,y):(sqrt(5)-1)x-sqrt(10+2sqrt(5))y ge 0, (sqrt(5)-1)x+sqrt(10+12sqrt(5)) y ge 0, x^(2)+y^(2) le 9}` then the diameter of S is :

A

`(3)/(2) (sqrt(5)-1)`

B

`3(sqrt(5)-1)`

C

`3sqrt(2)`

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 4 : Matching Type Problems|2 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 2 : One or More than One Answer is/are Correct|10 Videos
  • BIONMIAL THEOREM

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Subjective Type Problems|15 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos

Similar Questions

Explore conceptually related problems

Let the diameter of a subset S of the plane be defined as the maximum of the distance between arbitrary pairs of points of S. Q. Let S={(x,y):(y-x) le 0, x+y ge 0, x^(2)+y^(2) le 2} then the diameter of S is :

{:(sqrt(5)x - sqrt(7)y = 0),(sqrt(7)x - sqrt(3)y = 0):}

If (2+sqrt(5))/(2-sqrt(5)) =x and (2-sqrt(5))/(2+sqrt(5)) =y , find the value of x^(2)-y^(2) .

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)+ y^(2)+xy

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : x^(2)

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : xy

If x =(sqrt(5)-2)/(sqrt(5)+2) and y = (sqrt(5)+2)/(sqrt(5)-2) : find : y^(2)

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

Solve (sqrt(5)-1)/(sinx)+(sqrt(10+2sqrt(5)))/(cosx)=8,x in (0,pi/2)

Solve (sqrt(5)-1)/(sinx)+(sqrt(10+2sqrt(5)))/(cosx)=8,x in (0,pi/2)