Home
Class 12
MATHS
If tanA and tanB the roots of the quadra...

If tanA and tanB the roots of the quadratic equation, `4x^(2)-7x+1=0` then evaluate `4sin^(2)(A+B)-7sin(A+B)*cos(A+B)+cos^(2)(A+B)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(4\sin^2(A+B) - 7\sin(A+B)\cos(A+B) + \cos^2(A+B)\) given that \(\tan A\) and \(\tan B\) are the roots of the quadratic equation \(4x^2 - 7x + 1 = 0\). ### Step 1: Find the values of \(\tan A + \tan B\) and \(\tan A \tan B\) Using Vieta's formulas, for the quadratic equation \(ax^2 + bx + c = 0\): - The sum of the roots (\(\tan A + \tan B\)) is given by \(-\frac{b}{a}\). - The product of the roots (\(\tan A \tan B\)) is given by \(\frac{c}{a}\). For our equation \(4x^2 - 7x + 1 = 0\): - \(\tan A + \tan B = \frac{7}{4}\) - \(\tan A \tan B = \frac{1}{4}\) ### Step 2: Find \(\tan(A+B)\) Using the formula for the tangent of the sum of two angles: \[ \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] Substituting the values we found: \[ \tan(A+B) = \frac{\frac{7}{4}}{1 - \frac{1}{4}} = \frac{\frac{7}{4}}{\frac{3}{4}} = \frac{7}{3} \] ### Step 3: Calculate \(\sin(A+B)\) and \(\cos(A+B)\) Using the identity: \[ \sin^2(A+B) + \cos^2(A+B) = 1 \] And the relation: \[ \tan(A+B) = \frac{\sin(A+B)}{\cos(A+B)} \] Let \(\sin(A+B) = k\) and \(\cos(A+B) = \sqrt{1 - k^2}\). Then: \[ \frac{k}{\sqrt{1-k^2}} = \frac{7}{3} \] Squaring both sides: \[ k^2 = \frac{49}{58} \] Thus, \(\sin^2(A+B) = \frac{49}{58}\) and \(\cos^2(A+B) = 1 - \sin^2(A+B) = \frac{9}{58}\). ### Step 4: Substitute into the expression Now we substitute \(\sin^2(A+B)\) and \(\cos^2(A+B)\) into the expression: \[ 4\sin^2(A+B) - 7\sin(A+B)\cos(A+B) + \cos^2(A+B) \] Calculating each term: 1. \(4\sin^2(A+B) = 4 \cdot \frac{49}{58} = \frac{196}{58}\) 2. \(-7\sin(A+B)\cos(A+B) = -7 \cdot \sqrt{\frac{49}{58}} \cdot \sqrt{\frac{9}{58}} = -7 \cdot \frac{21}{58} = -\frac{147}{58}\) 3. \(\cos^2(A+B) = \frac{9}{58}\) Putting it all together: \[ \frac{196}{58} - \frac{147}{58} + \frac{9}{58} = \frac{196 - 147 + 9}{58} = \frac{58}{58} = 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If tan A and tan B are the roots of the quadratic equation x^2-px + q =0 then value of sin^2(A+B)

If a,b are real, then the roots of the quadratic equation (a-b)x^(2)-5 (a+b) x-2(a-b) =0 are

If sin theta and cos theta are the roots of the quadratic equation ax ^(2) +bx + c=0(a ne 0). Then find the value of (b ^(2) -a^(2))/(ac ).

Statement-1: If tanA, tanB are the roots of the equation x^(2)-ax-1=0,then sin^(2)(A+B)=(a^(2))/(1+a^(2)) Statement-2: sin^(2)(A+B)=(tan^(2)(A+B))/(1+tan^(2)(A+B))

Solve the equation 5 sin^(2)x-7 sinx cos x + 16 cos^(2)x=4

If x=2/3 and x=-3 are the roots of the equation a x^2+7x+b=0, find the values of a and b dot

If roots of quadratic equation x ^2 −kx+4=0 then k will be a. 2 b 1 c. 3 d. 4

The roots of the quadratic equation (a + b-2c)x^2+ (2a-b-c) x + (a-2b + c) = 0 are

The roots of the equation cos ^7x+sin^4x=1 in the interval (−π,π) are

Let n in Z and DeltaABC be a right tirangle with angle at C . If sin A and sin B are the roots of the quadratic equation (5n + 8) x^(2) - (7n - 20) x + 120 = 0 , then find the value of n.

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  2. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  3. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  4. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  5. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  6. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  7. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  8. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  9. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  10. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  11. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  12. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  13. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  14. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  15. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  16. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  17. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  18. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  19. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  20. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |