Home
Class 12
MATHS
If 10sin^4 alpha +15cos^4alpha=6 then t...

If `10sin^4 alpha +15cos^4alpha=6` then the value of `9cosec^4 alpha + 8 sec^4 alpha-75` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 9 \csc^4 \alpha + 8 \sec^4 \alpha - 75 \) given that \( 10 \sin^4 \alpha + 15 \cos^4 \alpha = 6 \). ### Step 1: Rewrite the given equation We start with the equation: \[ 10 \sin^4 \alpha + 15 \cos^4 \alpha = 6 \] We can rewrite this as: \[ 10 \sin^4 \alpha + 15 (1 - \sin^2 \alpha)^2 = 6 \] Let \( x = \sin^2 \alpha \). Then, \( \cos^2 \alpha = 1 - x \), and we can express \( \cos^4 \alpha \) as \( (1 - x)^2 \). ### Step 2: Substitute and simplify Substituting \( \cos^4 \alpha \): \[ 10 x^2 + 15 (1 - x)^2 = 6 \] Expanding the equation: \[ 10 x^2 + 15 (1 - 2x + x^2) = 6 \] \[ 10 x^2 + 15 - 30x + 15 x^2 = 6 \] Combining like terms: \[ 25 x^2 - 30x + 15 - 6 = 0 \] \[ 25 x^2 - 30x + 9 = 0 \] ### Step 3: Solve the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 25, b = -30, c = 9 \): \[ x = \frac{30 \pm \sqrt{(-30)^2 - 4 \cdot 25 \cdot 9}}{2 \cdot 25} \] Calculating the discriminant: \[ x = \frac{30 \pm \sqrt{900 - 900}}{50} = \frac{30 \pm 0}{50} = \frac{30}{50} = \frac{3}{5} \] Thus, \( \sin^2 \alpha = \frac{3}{5} \) and consequently \( \cos^2 \alpha = 1 - \frac{3}{5} = \frac{2}{5} \). ### Step 4: Calculate \( \csc^4 \alpha \) and \( \sec^4 \alpha \) Now we can find \( \csc^2 \alpha \) and \( \sec^2 \alpha \): \[ \csc^2 \alpha = \frac{1}{\sin^2 \alpha} = \frac{1}{\frac{3}{5}} = \frac{5}{3} \] \[ \sec^2 \alpha = \frac{1}{\cos^2 \alpha} = \frac{1}{\frac{2}{5}} = \frac{5}{2} \] Now, we calculate \( \csc^4 \alpha \) and \( \sec^4 \alpha \): \[ \csc^4 \alpha = \left(\frac{5}{3}\right)^4 = \frac{625}{81} \] \[ \sec^4 \alpha = \left(\frac{5}{2}\right)^4 = \frac{625}{16} \] ### Step 5: Substitute into the expression Now substitute these values into the expression: \[ 9 \csc^4 \alpha + 8 \sec^4 \alpha - 75 = 9 \cdot \frac{625}{81} + 8 \cdot \frac{625}{16} - 75 \] Calculating each term: \[ 9 \cdot \frac{625}{81} = \frac{5625}{81} \] \[ 8 \cdot \frac{625}{16} = \frac{5000}{16} \] To add these fractions, we need a common denominator. The least common multiple of 81 and 16 is 1296. Converting both fractions: \[ \frac{5625}{81} = \frac{5625 \times 16}{1296} = \frac{90000}{1296} \] \[ \frac{5000}{16} = \frac{5000 \times 81}{1296} = \frac{405000}{1296} \] Adding these: \[ \frac{90000 + 405000}{1296} = \frac{495000}{1296} \] Now subtract 75: \[ 75 = \frac{75 \times 1296}{1296} = \frac{97200}{1296} \] Thus: \[ \frac{495000 - 97200}{1296} = \frac{397800}{1296} \] Simplifying: \[ \frac{397800 \div 1296}{1296 \div 1296} = \frac{307}{1} = 307 \] ### Final Answer The value of \( 9 \csc^4 \alpha + 8 \sec^4 \alpha - 75 \) is: \[ \boxed{307} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 alpha+8sec^6 alpha.

If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha+8 sec^(4) alpha is S, then find the value of (S)/(25) .

If 10sin^4alpha+15cos^4alpha=6 , find the value of 27cos e c^6alpha+8s e c^6alpha .

If 15 sin^(4)alpha+10cos^(4)alpha=6 , then the value of 8 cosec^(6)alpha+27 sec^(6)alpha is

If alpha satisfies 15 sin^(4)alpha + 10 cos^(4)alpha=6 , then find the value of 27 sin^(8)alpha + 8 cos^(8) alpha

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to

If 0 lt alpha lt pi/6 , then the value of (alpha cosec alpha ) is

If sin alpha -cos alpha = m , then the value of sin^6alpha+cos^6alpha in terms of m is

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to

If x sin alpha = y cos alpha, prove that : x/(sec 2alpha) + y/(cosec 2 alpha) = x

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  2. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  3. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  4. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  5. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  6. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  7. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  8. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  9. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  10. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  11. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  12. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  13. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  14. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  15. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  16. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  17. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  18. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  19. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  20. Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

    Text Solution

    |