Home
Class 12
MATHS
If alpha=pi/7 then find the value of (1/...

If `alpha=pi/7` then find the value of `(1/cosalpha+(2cosalpha)/(cos2alpha))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \frac{1}{\cos \alpha} + \frac{2 \cos \alpha}{\cos 2\alpha} \) where \( \alpha = \frac{\pi}{7} \). ### Step-by-Step Solution: 1. **Substitute the value of \(\alpha\)**: \[ \alpha = \frac{\pi}{7} \] Therefore, we need to calculate \( \cos \frac{\pi}{7} \) and \( \cos \frac{2\pi}{7} \). 2. **Use the double angle formula for cosine**: The double angle formula states that: \[ \cos 2\alpha = 2 \cos^2 \alpha - 1 \] Thus, we can express \( \cos 2\alpha \) in terms of \( \cos \alpha \): \[ \cos 2\alpha = 2 \cos^2 \left(\frac{\pi}{7}\right) - 1 \] 3. **Rewrite the expression**: The expression can be rewritten as: \[ \frac{1}{\cos \alpha} + \frac{2 \cos \alpha}{\cos 2\alpha} = \frac{1}{\cos \alpha} + \frac{2 \cos \alpha}{2 \cos^2 \alpha - 1} \] 4. **Find a common denominator**: The common denominator for the two fractions is \( \cos \alpha (2 \cos^2 \alpha - 1) \): \[ \frac{(2 \cos^2 \alpha - 1) + 2 \cos^2 \alpha}{\cos \alpha (2 \cos^2 \alpha - 1)} = \frac{4 \cos^2 \alpha - 1}{\cos \alpha (2 \cos^2 \alpha - 1)} \] 5. **Substitute the value of \( \cos \alpha \)**: We can approximate \( \cos \frac{\pi}{7} \). For simplicity, let's denote \( \cos \frac{\pi}{7} \) as \( c \). Using a calculator or known values, we find: \[ c \approx 0.90097 \] 6. **Calculate \( \cos 2\alpha \)**: \[ \cos 2\alpha = 2c^2 - 1 \approx 2(0.90097^2) - 1 \approx 2(0.81174) - 1 \approx 0.62348 \] 7. **Substitute \( c \) into the expression**: Now substituting \( c \) into the expression: \[ \frac{4(0.90097^2) - 1}{0.90097(2(0.90097^2) - 1)} \approx \frac{4(0.81174) - 1}{0.90097(0.62348)} \] Calculating the numerator: \[ 4(0.81174) - 1 \approx 3.247 - 1 \approx 2.247 \] And the denominator: \[ 0.90097 \times 0.62348 \approx 0.560 \] 8. **Final calculation**: Now, we compute: \[ \frac{2.247}{0.560} \approx 4.01 \] ### Final Answer: The value of \( \frac{1}{\cos \alpha} + \frac{2 \cos \alpha}{\cos 2\alpha} \) is approximately \( 4.01 \).
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha).

If cosalpha, cosbeta and cosgamma are the direction cosine of a line, then find the value of cos^2alpha+(cosbeta+singamma)(cosbeta-singamma) .

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dx

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

Integrate the functions (cos2x-cos2alpha)/(cosx-cosalpha)

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dxdot

If 0 lt alpha lt pi/2 then show that tanalpha+cotalphagtsinalpha+cosalpha

If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to

Givent that pi/2 lt alphaltpi then the expression sqrt((1-sinalpha)/(1+sinalpha))+sqrt((1+sinalpha)/(1-sinalpha)) (A) 1/(cosalpha) (B) - 2/(cosalpha) (C) 2/(cosalpha) (D) does not exist

If pi lt alpha lt (3pi)/2 then find the value of expression sqrt(4 sin^4 alpha+ sin^2 2alpha)+ 4 cos^2(pi/4- alpha/2)

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If 10sin^4 alpha +15cos^4alpha=6 then the value of 9cosec^4 alpha + 8...

    Text Solution

    |

  2. The value of (1+tan\ (3pi)/8*tan\ pi/8)+(1+tan\ (5pi)/8*tan\ (3pi)/8)+...

    Text Solution

    |

  3. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  4. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  5. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  6. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  7. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  8. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  9. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  10. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  11. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  12. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  13. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  14. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  15. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  16. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  17. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  18. Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

    Text Solution

    |

  19. Let alpha be the smallest integral value of x, x>0 such that tan 19x=(...

    Text Solution

    |

  20. Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@...

    Text Solution

    |