Home
Class 12
MATHS
The expression 2"cos"(pi)/(17)*"cos"(9pi...

The expression `2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9pi)/(17)` simplifies to an integer P. Find the value of P.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( P = 2 \cos\left(\frac{\pi}{17}\right) \cos\left(\frac{9\pi}{17}\right) + \cos\left(\frac{7\pi}{17}\right) + \cos\left(\frac{9\pi}{17}\right) \), we can simplify it step by step. ### Step 1: Rewrite the Expression We start with the expression: \[ P = 2 \cos\left(\frac{\pi}{17}\right) \cos\left(\frac{9\pi}{17}\right) + \cos\left(\frac{7\pi}{17}\right) + \cos\left(\frac{9\pi}{17}\right) \] ### Step 2: Apply the Product-to-Sum Formula We can use the formula \( 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \). Here, let \( A = \frac{\pi}{17} \) and \( B = \frac{9\pi}{17} \): \[ 2 \cos\left(\frac{\pi}{17}\right) \cos\left(\frac{9\pi}{17}\right) = \cos\left(\frac{\pi}{17} + \frac{9\pi}{17}\right) + \cos\left(\frac{\pi}{17} - \frac{9\pi}{17}\right) \] Calculating the angles: \[ \frac{\pi}{17} + \frac{9\pi}{17} = \frac{10\pi}{17} \] \[ \frac{\pi}{17} - \frac{9\pi}{17} = -\frac{8\pi}{17} \] Using the property \( \cos(-x) = \cos(x) \): \[ \cos\left(-\frac{8\pi}{17}\right) = \cos\left(\frac{8\pi}{17}\right) \] Thus, we have: \[ 2 \cos\left(\frac{\pi}{17}\right) \cos\left(\frac{9\pi}{17}\right) = \cos\left(\frac{10\pi}{17}\right) + \cos\left(\frac{8\pi}{17}\right) \] ### Step 3: Substitute Back into the Expression Now substituting back into \( P \): \[ P = \cos\left(\frac{10\pi}{17}\right) + \cos\left(\frac{8\pi}{17}\right) + \cos\left(\frac{7\pi}{17}\right) + \cos\left(\frac{9\pi}{17}\right) \] ### Step 4: Group the Cosine Terms Notice that we can group the terms: \[ P = \left(\cos\left(\frac{10\pi}{17}\right) + \cos\left(\frac{7\pi}{17}\right)\right) + \left(\cos\left(\frac{8\pi}{17}\right) + \cos\left(\frac{9\pi}{17}\right)\right) \] ### Step 5: Apply the Sum-to-Product Formula Using the sum-to-product formula \( \cos A + \cos B = 2 \cos\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \): 1. For \( \cos\left(\frac{10\pi}{17}\right) + \cos\left(\frac{7\pi}{17}\right) \): - \( A = \frac{10\pi}{17}, B = \frac{7\pi}{17} \) - \( \frac{A + B}{2} = \frac{17\pi}{34} = \frac{\pi}{2} \) - \( \frac{A - B}{2} = \frac{3\pi}{34} \) - This gives \( 2 \cos\left(\frac{\pi}{2}\right) \cos\left(\frac{3\pi}{34}\right) = 0 \) (since \( \cos\left(\frac{\pi}{2}\right) = 0 \)). 2. For \( \cos\left(\frac{8\pi}{17}\right) + \cos\left(\frac{9\pi}{17}\right) \): - \( A = \frac{8\pi}{17}, B = \frac{9\pi}{17} \) - \( \frac{A + B}{2} = \frac{17\pi}{34} = \frac{\pi}{2} \) - \( \frac{A - B}{2} = -\frac{\pi}{34} \) - This also gives \( 2 \cos\left(\frac{\pi}{2}\right) \cos\left(-\frac{\pi}{34}\right) = 0 \). ### Final Step: Conclusion Since both pairs sum to zero: \[ P = 0 + 0 = 0 \] Thus, the value of \( P \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

The value of "cos"(2pi)/(15)."cos"(4pi)/(15)."cos"(8pi)/(15)."cos"(16pi)/(15) is

2 cos ""(pi)/(13) cos ""(9pi)/(13) + cos ""(3pi)/(13) + cos "" (5pi)/(13) = 0.

Prove that: 2cos pi/(13) cos (9pi)/(13) +cos (3pi)/(13) +cos (5pi)/(13)=0

cos(pi/11) cos((2pi)/11) cos((3pi)/11)....cos((11pi)/11)=

The value of cos""(pi)/(11)+cos""(3pi)/(11)+cos""(5pi)/(11)+cos""(7pi)/(11)+cos""(9pi)/(11), is

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9), is

The value oif the expressin (1+cospi/10)(1+cos(3pi)/10)(1+cos(7pi)/10)(1+cos(9pi)/10) is

Find cos "" (7pi)/(8).

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

"cos(pi/15)cos((2pi)/15)cos((4pi)/15)cos((8pi)/15)=k

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  2. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  3. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  4. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  5. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  6. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  7. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  8. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  9. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  10. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  11. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  12. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  13. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  14. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  15. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  16. Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

    Text Solution

    |

  17. Let alpha be the smallest integral value of x, x>0 such that tan 19x=(...

    Text Solution

    |

  18. Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@...

    Text Solution

    |

  19. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  20. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |