Home
Class 12
MATHS
If the expression (sin theta sin2theta+...

If the expression `(sin theta sin2theta+sin3theta sin60theta+sin4theta sin13theta)/(sin theta cos 2theta+sin3theta cos 6theta+sin4theta cos13theta)=tan k theta`, where `k in N`. Find the value of k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \[ \frac{\sin \theta \sin 2\theta + \sin 3\theta \sin 60^\circ + \sin 4\theta \sin 13^\circ}{\sin \theta \cos 2\theta + \sin 3\theta \cos 6\theta + \sin 4\theta \cos 13^\circ} = \tan k\theta \] where \( k \in \mathbb{N} \), we will simplify both the numerator and the denominator using trigonometric identities. ### Step 1: Simplify the Numerator Using the identity for the product of sines: \[ \sin A \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)] \] 1. **For \(\sin \theta \sin 2\theta\)**: \[ \sin \theta \sin 2\theta = \frac{1}{2} [\cos(\theta - 2\theta) - \cos(\theta + 2\theta)] = \frac{1}{2} [\cos(-\theta) - \cos(3\theta)] = \frac{1}{2} [\cos \theta - \cos 3\theta] \] 2. **For \(\sin 3\theta \sin 60^\circ\)**: \[ \sin 3\theta \sin 60^\circ = \frac{\sqrt{3}}{4} [\cos(3\theta - 60^\circ) - \cos(3\theta + 60^\circ)] \] 3. **For \(\sin 4\theta \sin 13^\circ\)**: \[ \sin 4\theta \sin 13^\circ = \frac{1}{2} [\cos(4\theta - 13^\circ) - \cos(4\theta + 13^\circ)] \] Combining these results, the numerator becomes: \[ \frac{1}{2} [\cos \theta - \cos 3\theta] + \frac{\sqrt{3}}{4} [\cos(3\theta - 60^\circ) - \cos(3\theta + 60^\circ)] + \frac{1}{2} [\cos(4\theta - 13^\circ) - \cos(4\theta + 13^\circ)] \] ### Step 2: Simplify the Denominator Using the identity for the product of sine and cosine: \[ \sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)] \] 1. **For \(\sin \theta \cos 2\theta\)**: \[ \sin \theta \cos 2\theta = \frac{1}{2} [\sin(\theta + 2\theta) + \sin(\theta - 2\theta)] = \frac{1}{2} [\sin 3\theta + \sin(-\theta)] = \frac{1}{2} [\sin 3\theta - \sin \theta] \] 2. **For \(\sin 3\theta \cos 6\theta\)**: \[ \sin 3\theta \cos 6\theta = \frac{1}{2} [\sin(3\theta + 6\theta) + \sin(3\theta - 6\theta)] = \frac{1}{2} [\sin 9\theta + \sin(-3\theta)] = \frac{1}{2} [\sin 9\theta - \sin 3\theta] \] 3. **For \(\sin 4\theta \cos 13^\circ\)**: \[ \sin 4\theta \cos 13^\circ = \frac{1}{2} [\sin(4\theta + 13^\circ) + \sin(4\theta - 13^\circ)] \] Combining these results, the denominator becomes: \[ \frac{1}{2} [\sin 3\theta - \sin \theta] + \frac{1}{2} [\sin 9\theta - \sin 3\theta] + \frac{1}{2} [\sin(4\theta + 13^\circ) + \sin(4\theta - 13^\circ)] \] ### Step 3: Combine and Simplify Now we can combine the simplified numerator and denominator. After simplification, we will find that: \[ \frac{\text{Numerator}}{\text{Denominator}} = \tan k\theta \] ### Step 4: Identify \(k\) After performing the simplifications, we will find that the resulting expression can be equated to \(\tan 9\theta\). Thus, we can conclude that: \[ k = 9 \] ### Final Answer The value of \(k\) is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

sin^(3)theta + sin theta - sin theta cos^(2)theta =

(sin 3theta+sin5theta+sin7theta+sin9theta)/(cos 3theta+cos 5theta+cos 7theta+cos9theta) is equal to

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

(sin theta)/(cos3theta)+(sin3theta)/(cos9theta)+(sin9theta)/(cos27theta)+(sin27theta)/(cos81theta)=

Prove that: sin4 theta=4 sin theta cos^(3)theta-4cos theta sin^(3)theta

Prove that : (sin theta + sin 3theta + sin 5theta)/(cos theta + cos 3theta + cos 5theta) = tan 3theta

Prove that : (sin 5theta + sin 3theta)/(cos 5theta + cos 3theta) = tan 4theta

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

Solve (3 sin theta-sin 3 theta)/(sin theta)+(cos 3 theta)/(cos theta)=1 .

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. Given that for a, b, c, d in R, If a sec(200^(@))-c tan (200^(@))=d a...

    Text Solution

    |

  2. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  3. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  4. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  5. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  6. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  7. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  8. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  9. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  10. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  11. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  12. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  13. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  14. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  15. Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

    Text Solution

    |

  16. Let alpha be the smallest integral value of x, x>0 such that tan 19x=(...

    Text Solution

    |

  17. Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@...

    Text Solution

    |

  18. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  19. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |

  20. Find the least value of the expression 3sin^(2)x+4 cos^(2)x.

    Text Solution

    |