Home
Class 12
MATHS
If the value of cos((2pi)/7) + cos((4pi)...

If the value of `cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=-l/2` Find the value of `l`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( l \) given that \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) + \cos\left(\frac{7\pi}{7}\right) = -\frac{l}{2}. \] ### Step 1: Simplify the expression First, we recognize that \( \cos\left(\frac{7\pi}{7}\right) = \cos(\pi) = -1 \). Therefore, we can rewrite the equation as: \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) - 1 = -\frac{l}{2}. \] ### Step 2: Rearranging the equation Now, we can rearrange the equation to isolate the sum of cosines: \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = -\frac{l}{2} + 1. \] ### Step 3: Finding the sum of cosines Next, we will calculate the sum \( \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) \). To do this, we can use the identity: \[ \cos A + \cos B + \cos C = \frac{1}{2} \left( \cos(A - B) + \cos(B - C) + \cos(C - A) \right). \] However, a more straightforward approach is to use the formula for the sum of cosines in terms of sine: \[ \cos A + \cos B + \cos C = \frac{1}{2} \left( \sin\left(\frac{C - A}{2}\right) \sin\left(\frac{C + A}{2}\right) + \sin\left(\frac{A - B}{2}\right) \sin\left(\frac{A + B}{2}\right) \right). \] ### Step 4: Using the sine identity We can also express the sum of cosines as: \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{6\pi}{7}\right) = -\frac{1}{2}. \] This can be derived from the properties of the roots of unity or using complex exponentials. ### Step 5: Substitute back into the equation Substituting this value back into our rearranged equation gives: \[ -\frac{1}{2} = -\frac{l}{2} + 1. \] ### Step 6: Solve for \( l \) Now, we can solve for \( l \): \[ -\frac{1}{2} + 1 = -\frac{l}{2} \implies \frac{1}{2} = -\frac{l}{2}. \] Multiplying both sides by -2 gives: \[ l = -1. \] ### Final Answer Thus, the value of \( l \) is: \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos(2pi)/7+cos(4pi)/7+cos(6pi)/7

Find the value of 2cos^3(pi/7)-cos^2(pi/7)-cos(pi/7)

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  2. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  3. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  4. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  5. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  6. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  7. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  8. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  9. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  10. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  11. Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

    Text Solution

    |

  12. Let alpha be the smallest integral value of x, x>0 such that tan 19x=(...

    Text Solution

    |

  13. Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@...

    Text Solution

    |

  14. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  15. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |

  16. Find the least value of the expression 3sin^(2)x+4 cos^(2)x.

    Text Solution

    |

  17. Q. If tan alpha and tan beta are the roots of equation x^2-12x-3=0, th...

    Text Solution

    |

  18. The value of cos24^0/(2tan33^0sin^2(57^0))+sin162^0/(sin18^0-cos18^0ta...

    Text Solution

    |

  19. Find the value of tantheta(1+sec2theta)(1+sec4theta)(1+sec8theta), whe...

    Text Solution

    |

  20. If lambda be the minimum value of y= (sinx+"cosec"x)^(2)+(cosx+secx)^...

    Text Solution

    |