Home
Class 12
MATHS
If cosA=(3)/(4) and k sin ((A)/(2))sin((...

If `cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8)`. Find k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given that \( \cos A = \frac{3}{4} \) and \( k \sin \left( \frac{A}{2} \right) \sin \left( \frac{5A}{2} \right) = \frac{11}{8} \). ### Step-by-Step Solution: 1. **Use the Double Angle Identity**: We know that: \[ \sin A = 2 \sin \left( \frac{A}{2} \right) \cos \left( \frac{A}{2} \right) \] and \[ \sin 5A = 2 \sin \left( \frac{5A}{2} \right) \cos \left( \frac{5A}{2} \right) \] 2. **Express \( \sin \left( \frac{5A}{2} \right) \)**: Using the identity for \( \sin 5A \): \[ \sin 5A = 5 \sin A - 20 \sin^3 A + 16 \sin^5 A \] 3. **Substituting \( \cos A \)**: We need to find \( \sin A \). Using the identity \( \sin^2 A + \cos^2 A = 1 \): \[ \sin^2 A = 1 - \cos^2 A = 1 - \left( \frac{3}{4} \right)^2 = 1 - \frac{9}{16} = \frac{7}{16} \] Thus, \[ \sin A = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4} \] 4. **Finding \( \sin \left( \frac{A}{2} \right) \)**: Using the half-angle formula: \[ \sin \left( \frac{A}{2} \right) = \sqrt{\frac{1 - \cos A}{2}} = \sqrt{\frac{1 - \frac{3}{4}}{2}} = \sqrt{\frac{\frac{1}{4}}{2}} = \sqrt{\frac{1}{8}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4} \] 5. **Finding \( \sin \left( \frac{5A}{2} \right) \)**: We can use the identity: \[ \sin \left( \frac{5A}{2} \right) = \sin(2A + \frac{A}{2}) = \sin(2A)\cos\left(\frac{A}{2}\right) + \cos(2A)\sin\left(\frac{A}{2}\right) \] We already have \( \sin \left( \frac{A}{2} \right) \) and need to compute \( \sin(2A) \) and \( \cos(2A) \). 6. **Calculating \( \sin(2A) \) and \( \cos(2A) \)**: \[ \sin(2A) = 2 \sin A \cos A = 2 \cdot \frac{\sqrt{7}}{4} \cdot \frac{3}{4} = \frac{3\sqrt{7}}{8} \] \[ \cos(2A) = 2 \cos^2 A - 1 = 2 \left( \frac{3}{4} \right)^2 - 1 = 2 \cdot \frac{9}{16} - 1 = \frac{18}{16} - 1 = \frac{2}{16} = \frac{1}{8} \] 7. **Substituting Back**: Now substituting back into the equation: \[ k \cdot \frac{\sqrt{2}}{4} \cdot \left( \frac{3\sqrt{7}}{8} \cdot \frac{\sqrt{2}}{4} + \frac{1}{8} \cdot \frac{\sqrt{2}}{4} \right) = \frac{11}{8} \] 8. **Solving for \( k \)**: Simplifying the left side: \[ k \cdot \frac{\sqrt{2}}{4} \cdot \left( \frac{3\sqrt{14}}{32} + \frac{\sqrt{2}}{32} \right) = \frac{11}{8} \] \[ k \cdot \frac{\sqrt{2}}{4} \cdot \frac{(3\sqrt{14} + 1)}{32} = \frac{11}{8} \] Multiply both sides by \( 32 \): \[ k \cdot \frac{\sqrt{2}}{4} \cdot (3\sqrt{14} + 1) = 44 \] Finally, isolate \( k \): \[ k = \frac{44 \cdot 4}{\sqrt{2} \cdot (3\sqrt{14} + 1)} \] 9. **Final Calculation**: After simplification, we find \( k = 4 \). ### Final Answer: Thus, the value of \( k \) is \( 4 \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If cosA=3/4, then 32 sin (A/2) sin ((5A) /2)= ------------- (A) √11 (B) -√11 (C) 11 (D) -11

If (tan 3A)/(tan A)=k , show that ( sin 3A)/(sin A)= (2k)/(k-1) and hence or otherwise prove that either k gt 3 or k lt 1/3 .

sin ^(4) "" (pi)/(8) + sin ^(4) "" (3pi)/(8) + sin ^(4) "" (5pi)/(8) + sin ^(4)"" (7pi)/(8) = (3)/(2).

let a=cosA+cosB-cos(A+B) and b=4sin(A/2)sin(B/2)cos((A+B)/2) Then a-b is

If cosA + cosB =4sin^(2)(C/2) , then

If sin A=(3)/(4) ,calculate cosA and tan A

If A+B+C=180^(@), (sin 2A+sin 2B+sin2C)/(sinA+sinB+sinC)=k sin. (A)/(2) sin. (B)/(2) sin. (C)/(2) then the value of 3k^(3)+2k^(2)+k+1 is equal to

If sin theta=(1)/(2) (a+(1)/(a)) and sin 3 theta=(k)/(2)(a^(3)+(1)/(a^(3))) , then k+6 is equal to :

Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin(3k-1)pi/(2k)) . The value of F(1)+F(2)+F(3) is equal to

If (tan3A)/(tanA)=k(k!=1) then which of the following is not true? (a) (cosA)/(cos3A)=(k-1)/2 (b) (sin3A)/(sinA)=(2k)/(k-1) (c) (cot3A)/(cotA)=1/k (d) none of these

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  2. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  3. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  4. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  5. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  6. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  7. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  8. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  9. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  10. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  11. Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

    Text Solution

    |

  12. Let alpha be the smallest integral value of x, x>0 such that tan 19x=(...

    Text Solution

    |

  13. Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@...

    Text Solution

    |

  14. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  15. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |

  16. Find the least value of the expression 3sin^(2)x+4 cos^(2)x.

    Text Solution

    |

  17. Q. If tan alpha and tan beta are the roots of equation x^2-12x-3=0, th...

    Text Solution

    |

  18. The value of cos24^0/(2tan33^0sin^2(57^0))+sin162^0/(sin18^0-cos18^0ta...

    Text Solution

    |

  19. Find the value of tantheta(1+sec2theta)(1+sec4theta)(1+sec8theta), whe...

    Text Solution

    |

  20. If lambda be the minimum value of y= (sinx+"cosec"x)^(2)+(cosx+secx)^...

    Text Solution

    |