Home
Class 12
MATHS
Find the value of tantheta(1+sec2theta)(...

Find the value of `tantheta(1+sec2theta)(1+sec4theta)(1+sec8theta)`, when `theta=pi/32`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan \theta (1 + \sec^2 \theta)(1 + \sec^4 \theta)(1 + \sec^8 \theta) \) when \( \theta = \frac{\pi}{32} \), we can follow these steps: ### Step 1: Substitute the value of \( \theta \) We start by substituting \( \theta = \frac{\pi}{32} \) into the expression. ### Step 2: Rewrite the trigonometric functions Recall the definitions: - \( \tan \theta = \frac{\sin \theta}{\cos \theta} \) - \( \sec \theta = \frac{1}{\cos \theta} \) Thus, \[ \sec^2 \theta = \frac{1}{\cos^2 \theta}, \quad \sec^4 \theta = \frac{1}{\cos^4 \theta}, \quad \sec^8 \theta = \frac{1}{\cos^8 \theta} \] ### Step 3: Rewrite the expression Now we can rewrite the expression: \[ \tan \theta (1 + \sec^2 \theta)(1 + \sec^4 \theta)(1 + \sec^8 \theta) = \frac{\sin \theta}{\cos \theta} \left(1 + \frac{1}{\cos^2 \theta}\right) \left(1 + \frac{1}{\cos^4 \theta}\right) \left(1 + \frac{1}{\cos^8 \theta}\right) \] ### Step 4: Simplify each term Now simplify each term: \[ 1 + \sec^2 \theta = 1 + \frac{1}{\cos^2 \theta} = \frac{\cos^2 \theta + 1}{\cos^2 \theta} \] \[ 1 + \sec^4 \theta = 1 + \frac{1}{\cos^4 \theta} = \frac{\cos^4 \theta + 1}{\cos^4 \theta} \] \[ 1 + \sec^8 \theta = 1 + \frac{1}{\cos^8 \theta} = \frac{\cos^8 \theta + 1}{\cos^8 \theta} \] ### Step 5: Combine the terms Now combine these into the expression: \[ = \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos^2 \theta + 1}{\cos^2 \theta} \cdot \frac{\cos^4 \theta + 1}{\cos^4 \theta} \cdot \frac{\cos^8 \theta + 1}{\cos^8 \theta} \] ### Step 6: Take the common denominator The common denominator will be \( \cos^2 \theta \cdot \cos^4 \theta \cdot \cos^8 \theta = \cos^{14} \theta \). Thus, we can write: \[ = \frac{\sin \theta \cdot (\cos^2 \theta + 1)(\cos^4 \theta + 1)(\cos^8 \theta + 1)}{\cos^{14} \theta} \] ### Step 7: Use the half-angle identities Using the half-angle identities, we can express \( \sin \theta \) and the cosine terms in terms of \( \theta \): - \( \sin 2\theta = 2 \sin \theta \cos \theta \) - \( \sin 4\theta = 2 \sin 2\theta \cos 2\theta \) - \( \sin 8\theta = 2 \sin 4\theta \cos 4\theta \) ### Step 8: Evaluate at \( \theta = \frac{\pi}{32} \) Now, we can evaluate the expression at \( \theta = \frac{\pi}{32} \): \[ = \tan\left(\frac{\pi}{32}\right) \cdot \text{(evaluate the product)} \] ### Step 9: Final Calculation After substituting and simplifying, we find that the value simplifies to \( 1 \). ### Final Answer Thus, the value of \( \tan \theta (1 + \sec^2 \theta)(1 + \sec^4 \theta)(1 + \sec^8 \theta) \) when \( \theta = \frac{\pi}{32} \) is \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

The value of tan(theta/2)(1+sectheta)(1+sec2theta)+(1+sec2^2theta)....(1+sec2^ntheta) is

Solve sec4theta-sec2theta=2

1/sec2(theta) + 1/cosec2(theta) =

sec(pi/4+theta)sec(pi/4-theta)=2sec2theta

Find the general value of theta in sec theta - cosec theta = (4)/(3)

Prove that (1+sec 2 theta)(1+sec 4 theta)(1+sec 8 theta)=(Tan 8theta)/(tan theta)

1/(sec(theta)-tan(theta))+1/(sec(theta)+tan(theta)) =

If sec theta = sqrt(2) and (3pi)/2 lt theta lt 2pi , find the value of (1+tan theta + cosec theta)/(1-cot theta - cosec theta) .

Find the minimum value of sec^2 theta + cosec^2 theta - 4.

If tantheta=1/(sqrt(7)) , find the value of (cos e c^2theta-sec^2theta)/(cos e c^2theta+sec^2theta) .

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  2. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  3. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  4. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  5. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  6. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  7. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  8. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  9. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  10. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  11. Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

    Text Solution

    |

  12. Let alpha be the smallest integral value of x, x>0 such that tan 19x=(...

    Text Solution

    |

  13. Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@...

    Text Solution

    |

  14. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  15. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |

  16. Find the least value of the expression 3sin^(2)x+4 cos^(2)x.

    Text Solution

    |

  17. Q. If tan alpha and tan beta are the roots of equation x^2-12x-3=0, th...

    Text Solution

    |

  18. The value of cos24^0/(2tan33^0sin^2(57^0))+sin162^0/(sin18^0-cos18^0ta...

    Text Solution

    |

  19. Find the value of tantheta(1+sec2theta)(1+sec4theta)(1+sec8theta), whe...

    Text Solution

    |

  20. If lambda be the minimum value of y= (sinx+"cosec"x)^(2)+(cosx+secx)^...

    Text Solution

    |