Home
Class 12
MATHS
If lambda be the minimum value of y= (s...

If `lambda` be the minimum value of `y= (sinx+"cosec"x)^(2)+(cosx+secx)^(2)+(tanx+cot x)^(2)` where `x in R`. Find `lambda-6`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \[ y = (\sin x + \csc x)^2 + (\cos x + \sec x)^2 + (\tan x + \cot x)^2 \] we will proceed step by step. ### Step 1: Expand Each Term We start by expanding each term in the expression. 1. **Expand \((\sin x + \csc x)^2\)**: \[ (\sin x + \csc x)^2 = \sin^2 x + 2 + \csc^2 x \] where \(\csc x = \frac{1}{\sin x}\), thus \(\csc^2 x = \frac{1}{\sin^2 x}\). 2. **Expand \((\cos x + \sec x)^2\)**: \[ (\cos x + \sec x)^2 = \cos^2 x + 2 + \sec^2 x \] where \(\sec x = \frac{1}{\cos x}\), thus \(\sec^2 x = \frac{1}{\cos^2 x}\). 3. **Expand \((\tan x + \cot x)^2\)**: \[ (\tan x + \cot x)^2 = \tan^2 x + 2 + \cot^2 x \] where \(\tan x = \frac{\sin x}{\cos x}\) and \(\cot x = \frac{\cos x}{\sin x}\). ### Step 2: Combine the Expanded Terms Now we can combine all the expanded terms: \[ y = \left(\sin^2 x + \csc^2 x + 2\right) + \left(\cos^2 x + \sec^2 x + 2\right) + \left(\tan^2 x + \cot^2 x + 2\right) \] Combining these gives: \[ y = \sin^2 x + \cos^2 x + \csc^2 x + \sec^2 x + \tan^2 x + \cot^2 x + 6 \] ### Step 3: Use Trigonometric Identities Using the identities: - \(\sin^2 x + \cos^2 x = 1\) - \(\csc^2 x = 1 + \cot^2 x\) - \(\sec^2 x = 1 + \tan^2 x\) We can substitute: \[ y = 1 + (1 + \cot^2 x) + (1 + \tan^2 x) + \tan^2 x + \cot^2 x + 6 \] This simplifies to: \[ y = 9 + \tan^2 x + \cot^2 x + \tan^2 x + \cot^2 x \] \[ y = 9 + 2(\tan^2 x + \cot^2 x) \] ### Step 4: Simplify Further Using the identity \(\tan^2 x + \cot^2 x \geq 2\) (AM-GM inequality), we find: \[ \tan^2 x + \cot^2 x \geq 2 \] Thus: \[ y \geq 9 + 2 \cdot 2 = 13 \] ### Step 5: Find Minimum Value The minimum value of \(y\) is \(13\). ### Step 6: Calculate \(\lambda - 6\) Since \(\lambda\) is the minimum value of \(y\): \[ \lambda = 13 \] Thus: \[ \lambda - 6 = 13 - 6 = 7 \] ### Final Answer \[ \lambda - 6 = 7 \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|5 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|24 Videos

Similar Questions

Explore conceptually related problems

If 0ltxlt(pi)/(2) , then the minimum value of (sinx+cosx+cosec2x) ,is

The minimum value of |sinx+cosx+tanx+secx+"cosec"x+cotx| , is

If 0ltxlt(pi)/(2) , then the minimum value of 2(sinx+cosx+cosec 2x)^3 is

If y=(sinx+cosecx)^2+(cosx+secx)^2 then the minimum value of y,AAx in R , is

If y=(sinx+cos e cx)^2+(cosx+secx)^2 , then the minimum value of y ,AAx in R ,

Find the maximum and minimum value of y = asin^2x + b sinx.cosx + c cos^2x

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

Find maximum and minimum values of 9cos^(2)x + 48 sinx cosx - 5 sin^(2)x - 2 .

If cos 3x= 0 and x is acute find the value of : cot^(2) x- cosec ^(2)x

Statement:1 : Minimum value of sinx + " cosec "x is 2 for all x in (0,pi) and Statement 2: Min (sinx + " cosec "x)=2, AA x in R

VIKAS GUPTA (BLACK BOOK) ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  2. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  3. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  4. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  5. 3(sinx-cosx)^(4)+6(sinx+cosx)^(2)+4(sin^(6)x+cos^(6)x)=.....

    Text Solution

    |

  6. Q. x=a satisfy the equation 3^(sin 2x+2 cos^2 x)+3^(1-sin 2x+2 sin^ 2x...

    Text Solution

    |

  7. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  8. If tan20^0+tan40^0+tan80^0-tan60^0= lambdasin40^0, find lambda.

    Text Solution

    |

  9. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  10. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90)," then "K=

    Text Solution

    |

  11. Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

    Text Solution

    |

  12. Let alpha be the smallest integral value of x, x>0 such that tan 19x=(...

    Text Solution

    |

  13. Find the value of the expression (sin20^@(4cos20^@+1))/(cos20^@cos30^@...

    Text Solution

    |

  14. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  15. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |

  16. Find the least value of the expression 3sin^(2)x+4 cos^(2)x.

    Text Solution

    |

  17. Q. If tan alpha and tan beta are the roots of equation x^2-12x-3=0, th...

    Text Solution

    |

  18. The value of cos24^0/(2tan33^0sin^2(57^0))+sin162^0/(sin18^0-cos18^0ta...

    Text Solution

    |

  19. Find the value of tantheta(1+sec2theta)(1+sec4theta)(1+sec8theta), whe...

    Text Solution

    |

  20. If lambda be the minimum value of y= (sinx+"cosec"x)^(2)+(cosx+secx)^...

    Text Solution

    |