Home
Class 12
MATHS
In triangle ABC, a=3, b=4, c=2. Point D ...

In triangle ABC, `a=3, b=4, c=2`. Point D and E trisect the side BC. If `angleDAE=theta`, then `cot^(2)theta` is divisible by :

A

2

B

3

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze triangle ABC with the given sides and points D and E that trisect side BC. ### Step 1: Identify the triangle and its sides Given: - \( a = 3 \) (length of side BC) - \( b = 4 \) (length of side AC) - \( c = 2 \) (length of side AB) ### Step 2: Trisect side BC Since D and E trisect side BC, we can divide BC into three equal parts: - \( BD = DE = EC = 1 \) ### Step 3: Use the Cosine Rule in triangle ABC We will use the Cosine Rule to find the angles of triangle ABC. The Cosine Rule states: \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] Substituting the values: \[ \cos B = \frac{3^2 + 2^2 - 4^2}{2 \cdot 3 \cdot 2} = \frac{9 + 4 - 16}{12} = \frac{-3}{12} = -\frac{1}{4} \] ### Step 4: Use the Cosine Rule in triangle ABD Now, we will apply the Cosine Rule in triangle ABD: \[ \cos B = \frac{AD^2 + BD^2 - AB^2}{2 \cdot AD \cdot BD} \] Let \( AD = x \): \[ -\frac{1}{4} = \frac{x^2 + 1^2 - 2^2}{2 \cdot x \cdot 1} \] This simplifies to: \[ -\frac{1}{4} = \frac{x^2 + 1 - 4}{2x} \] Cross-multiplying gives: \[ -x^2 - 3 = -8x \implies x^2 - 8x + 3 = 0 \] Using the quadratic formula: \[ x = \frac{8 \pm \sqrt{(-8)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{8 \pm \sqrt{64 - 12}}{2} = \frac{8 \pm \sqrt{52}}{2} = \frac{8 \pm 2\sqrt{13}}{2} = 4 \pm \sqrt{13} \] Taking the positive root: \[ AD = 4 - \sqrt{13} \] ### Step 5: Use the Cosine Rule in triangle ABE Now we will apply the Cosine Rule in triangle ABE: \[ \cos C = \frac{AB^2 + AE^2 - BE^2}{2 \cdot AB \cdot AE} \] Let \( AE = y \): \[ \cos C = \frac{2^2 + y^2 - 1^2}{2 \cdot 2 \cdot y} \] We already found \( \cos C \) using triangle ABC: \[ \cos C = \frac{3^2 + 4^2 - 2^2}{2 \cdot 3 \cdot 4} = \frac{9 + 16 - 4}{24} = \frac{21}{24} = \frac{7}{8} \] Setting the two expressions equal: \[ \frac{7}{8} = \frac{4 + y^2 - 1}{4y} \] Cross-multiplying: \[ 7 \cdot 4y = 8(3 + y^2) \implies 28y = 24 + 8y^2 \] Rearranging gives: \[ 8y^2 - 28y + 24 = 0 \] Using the quadratic formula: \[ y = \frac{28 \pm \sqrt{(-28)^2 - 4 \cdot 8 \cdot 24}}{2 \cdot 8} = \frac{28 \pm \sqrt{784 - 768}}{16} = \frac{28 \pm 4}{16} \] Calculating gives: \[ y = \frac{32}{16} = 2 \quad \text{or} \quad y = \frac{24}{16} = \frac{3}{2} \] Taking the positive root: \[ AE = 2 \] ### Step 6: Calculate cotangent of angle DAE In triangle ADE, we have: - \( DE = 1 \) - \( AD = 4 - \sqrt{13} \) - \( AE = 2 \) Using the Cosine Rule again: \[ \cos \theta = \frac{AD^2 + AE^2 - DE^2}{2 \cdot AD \cdot AE} \] Substituting the values: \[ \cos \theta = \frac{(4 - \sqrt{13})^2 + 2^2 - 1^2}{2 \cdot (4 - \sqrt{13}) \cdot 2} \] Calculating gives: \[ \cos \theta = \frac{(16 - 8\sqrt{13} + 13 + 4 - 1)}{4(4 - \sqrt{13})} = \frac{32 - 8\sqrt{13}}{4(4 - \sqrt{13})} \] Simplifying gives: \[ \cos \theta = \frac{8 - 2\sqrt{13}}{4 - \sqrt{13}} \] ### Step 7: Find cot^2(theta) Using the identity \( \cot^2 \theta = \frac{1 - \cos^2 \theta}{\cos^2 \theta} \), we can find \( \cot^2 \theta \). ### Step 8: Check divisibility Finally, we check which of the options (2, 3, 5, 7) divide \( \cot^2 \theta \).
Promotional Banner

Topper's Solved these Questions

  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|13 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-4 : Matching Type Problems|2 Videos
  • SOLUTION OF TRIANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|11 Videos
  • SEQUENCE AND SERIES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|21 Videos
  • STRAIGHT LINES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|10 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, points D and E are taken on side BC such that BD= DE= EC. If angle ADE = angle AED = theta , then: (A) tan theta = 3 tan B (B) 3 tan theta = tan C

In a triangle ABC, points D and E are taken on side BC such that BD= DE= EC. If angle ADE = angle AED = theta , then: (A) tan theta = 3 tan B (B) 3 tan theta = tan C (C) (6tan theta )/( tan^2 theta -9)= tanA (D) angleB = angle C

Let us consider a triangle ABC having BC=5 cm, CA=4cm, AB=3cm, D,E are points on BC such BD = DE= EC, angleCAE=theta , then, AD^(2) is equal to

Let us consider a triangle ABC having BC=5 cm, CA=4cm, AB=3cm, D,E are points on BC such BD = DE= EC, angleCAE=theta , then: AE^(2) is equal to

In a triangle ABC , AB = 2, BC =4 ,CA = 3 . If D is the mid-point of BC, then the correct statement(s) is/are

In a triangle ABC , if 3a = b + c , then cot B/2 cot C/2 =

In triangle ABC, angleA=pi/3 and b:c =2:3, tan theta=sqrt3/5, 0 lt theta lt pi/2 then

Let us consider a /_\ ABC having BC=5 cm, CA=4cm, AB=3cm, D,E are points on BC such BD = DE= EC, angleCAE=theta , then, tan theta is equal to

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

If in a triangle ABC ,b +c=4a then cot(B/2)cot(C/2) is equal to