Home
Class 12
MATHS
If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqr...

If `cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x ,` then `sinx` is `tan^2alpha/2` (b) `cot^2alpha/2` (c) `tan^2alpha` (d) `cotalpha/2`

A

`tan^(2)((alpha)/(2))`

B

`cot^(2)((alpha)/(2))`

C

`tan alpha`

D

`cot((alpha)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

if cot^(-1)[sqrt(cosalpha)]-tan^(-1)[sqrt(cosalpha)]=x then sinx is equal to

If u=cot^(-1)sqrt(tanalpha)-tan^(-1)sqrt(tanalpha),t h e n tan(pi/4- u/2) is (a) sqrt(tanalpha) (b) sqrt(cotalpha) (c) tanalpha (d) cot alpha

If u=cot^(-1)sqrt(tanalpha)-tan^(-1)sqrt(tanalpha),t h e ntan(pi/4, u/2)i se q u a lto (a) sqrt(tanalpha) (b) sqrt(cotalpha) (c) tanalpha (d) cot alpha

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

If u=cot^-1 sqrt(tanalpha)-tan^-1 sqrt(tan alpha), then tan(pi/4-u/2) is equal to (a) sqrt(tan alpha) (b) sqrt(cos alpha) (c) tan alpha (d) cot alpha

Prove that cot alpha - tan alpha =2 cot 2 alpha.

If tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))}=alpha , then x^2= sin2\ alpha (b) sin\ alpha (c) cos2\ alpha (d) cos\ alpha

(sqrt2-sinalpha-cosalpha)/(sinalpha-cosalpha) is equal to (a) sec(alpha/2-pi/8) (b) cos(pi/8-alpha/2) (c) tan(alpha/2-pi/8) (d) cot(alpha/2-pi/2)

The expression tan^2alpha+cot^2alpha is

If cot^3alpha+cot^2alpha+cotalpha=1 then (a) cos2alpha.tanalpha=-1 (b) cos2alpha.tanalpha=1 (c) cos2alpha-tan2alpha=1 (d) cos2alpha-tan2alpha=-1