Home
Class 12
MATHS
The sum of the infinite series cot^(-1)(...

The sum of the infinite series `cot^(-1)(7/4)+cot^(-1)((19)/4) +cot^(-1)((39)/4)....oo`

A

`(pi)/(4)-cot^(-1)(3)`

B

`(pi)/(4)-tan^(-1)(3)`

C

`(pi)/(4)+cot^(-1)(3)`

D

`(pi)/(4) +tan^(-1)(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the infinite series \( \cot^{-1}\left(\frac{7}{4}\right) + \cot^{-1}\left(\frac{19}{4}\right) + \cot^{-1}\left(\frac{39}{4}\right) + \ldots \), we can follow these steps: ### Step 1: Identify the General Term The terms in the series can be expressed as: \[ \cot^{-1}\left(\frac{7}{4}\right), \cot^{-1}\left(\frac{19}{4}\right), \cot^{-1}\left(\frac{39}{4}\right), \ldots \] We can observe that the numerators follow a pattern. The general term can be written as: \[ \cot^{-1}\left(\frac{4n^2 + 3}{4}\right) \quad \text{for } n = 1, 2, 3, \ldots \] ### Step 2: Rewrite the General Term The general term can be rewritten as: \[ \cot^{-1}\left(\frac{4n^2 + 3}{4}\right) = \cot^{-1}(n^2 + \frac{3}{4}) \] ### Step 3: Use the Cotangent Addition Formula Using the identity: \[ \cot^{-1}(x) + \cot^{-1}(y) = \cot^{-1}\left(\frac{xy - 1}{x + y}\right) \] we can express the sum of two terms in the series. ### Step 4: Telescoping Series We can express the series in a telescoping form: \[ \cot^{-1}(n) - \cot^{-1}(n+1) \] This allows us to write the series as: \[ \sum_{n=1}^{\infty} \left(\cot^{-1}(n) - \cot^{-1}(n+1)\right) \] which simplifies to: \[ \cot^{-1}(1) - \lim_{n \to \infty} \cot^{-1}(n) \] Since \( \cot^{-1}(n) \to 0 \) as \( n \to \infty \), we have: \[ \cot^{-1}(1) - 0 = \cot^{-1}(1) = \frac{\pi}{4} \] ### Step 5: Final Result Thus, the sum of the infinite series is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

The sum of the series cot^(-1)((9)/(2))+cot^(-1)((33)/(4))+cot^(-1)((129)/(8))+…….oo is equal to :

Sum of infinite terms of the series cot^(-1) ( 1^(2) + 3/4) + cot^(-1) ( 2^(2) + 3/4) + cot^(-1) ( 3^(2) + 3/4) + ... is

Prove that : cot^(-1) 3 + cot^(-1).(3)/(4) = cot^(-1) .(1)/(3)

Statement 1: The value of cot^(-1)((7)/(4))+cot^(-1)((19)/(4))+...+cot^(-1)((4r^(2)+3)/(4))+... upto infinity is tan^(-1)(2) . Statement 2: sum_(r=1)^(n)"tan"(x_(r)-x_(r-1))/(1+x_(r-1)x_(r))=tan^(-1)x_(n)-tan^(-1)x_(0) .

The sum to infinite terms of the series cot^(- 1)(2^2+1/2)+cot^(- 1)(2^3+1/(2^2))+cot^(- 1)(2^4+1/(2^3))+... is

cot^(-1)(-1/2)+cot^(-1)(-1/3) is equal to

Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi .

Prove: cot^(-1)(1/2)-1/2cot^(-1)(4/3)=pi/4

If the sum of first 16 terms of the series s=cot^(-1)(2^2+1/2)+cot^(-1)(2^3+1/(2^2))+cot^(-1)(2^4+1/(2^3))+ up to terms is cot^(-1)((1+2^n)/(2(2^(16)-1))) , then find the value of ndot

The value(s) of x satisfying the equation cot^(-1)(x)+cot^(-1)(17-x)=cot^(-1)(3) is/are (a)4 (b) 3 (c) 12 (d) 13