Home
Class 12
MATHS
sin^(-1)(x^2/4+y^2/9)+cos^(-1)(x/(2sqrt2...

`sin^(-1)(x^2/4+y^2/9)+cos^(-1)(x/(2sqrt2)+y/(3sqrt2)-2)`

A

`(pi)/(2)`

B

`pi`

C

`(pi)/(sqrt(2))`

D

`(3pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}\left(\frac{x^2}{4} + \frac{y^2}{9}\right) + \cos^{-1}\left(\frac{x}{2\sqrt{2}} + \frac{y}{3\sqrt{2}} - 2\right) \), we can follow these steps: ### Step 1: Substitute Variables Let \( x = 2 \cos \theta \) and \( y = 3 \sin \theta \). This substitution simplifies the trigonometric expressions. ### Step 2: Substitute in the Expression Substituting the values of \( x \) and \( y \) into the expression gives: \[ \sin^{-1}\left(\frac{(2 \cos \theta)^2}{4} + \frac{(3 \sin \theta)^2}{9}\right) + \cos^{-1}\left(\frac{2 \cos \theta}{2\sqrt{2}} + \frac{3 \sin \theta}{3\sqrt{2}} - 2\right) \] ### Step 3: Simplify the First Term The first term simplifies as follows: \[ \sin^{-1}\left(\frac{4 \cos^2 \theta}{4} + \frac{9 \sin^2 \theta}{9}\right) = \sin^{-1}(\cos^2 \theta + \sin^2 \theta) = \sin^{-1}(1) \] Since \( \cos^2 \theta + \sin^2 \theta = 1 \), we have: \[ \sin^{-1}(1) = \frac{\pi}{2} \] ### Step 4: Simplify the Second Term Now, simplify the second term: \[ \cos^{-1}\left(\frac{2 \cos \theta}{2\sqrt{2}} + \frac{3 \sin \theta}{3\sqrt{2}} - 2\right) = \cos^{-1}\left(\frac{\cos \theta}{\sqrt{2}} + \frac{\sin \theta}{\sqrt{2}} - 2\right) \] This can be rewritten as: \[ \cos^{-1}\left(\frac{\cos \theta + \sin \theta}{\sqrt{2}} - 2\right) \] ### Step 5: Analyze the Range The expression \( \frac{\cos \theta + \sin \theta}{\sqrt{2}} \) can take values from \(-\sqrt{2}\) to \(\sqrt{2}\). Therefore, the term \( \frac{\cos \theta + \sin \theta}{\sqrt{2}} - 2 \) will range from \(-\sqrt{2} - 2\) to \(\sqrt{2} - 2\). ### Step 6: Determine Validity of the Argument The argument of \( \cos^{-1} \) must lie between -1 and 1. Thus, we need to check: \[ -1 \leq \frac{\cos \theta + \sin \theta}{\sqrt{2}} - 2 \leq 1 \] This gives us: \[ 1 \leq \frac{\cos \theta + \sin \theta}{\sqrt{2}} \leq 3 \] Since \( \cos \theta + \sin \theta \) can only achieve a maximum of \(\sqrt{2}\), the only feasible solution is when: \[ \frac{\cos \theta + \sin \theta}{\sqrt{2}} = 1 \] This implies: \[ \cos \theta + \sin \theta = \sqrt{2} \] ### Step 7: Find \( \theta \) The equation \( \cos \theta + \sin \theta = \sqrt{2} \) leads to: \[ \theta = \frac{\pi}{4} \] ### Step 8: Substitute Back Substituting \( \theta = \frac{\pi}{4} \) back into the expression gives: \[ \frac{\pi}{2} + \cos^{-1}(0 - 2) \] This simplifies to: \[ \frac{\pi}{2} + \cos^{-1}(-1) = \frac{\pi}{2} + \pi = \frac{3\pi}{2} \] ### Final Answer Thus, the value of the given expression is: \[ \frac{3\pi}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

sin^(- 1)x+sin^(- 1)y=cos^(- 1) (sqrt(1-x^2) sqrt(1-y^2)-xy) if x in [0,1], y in [0,1]

If y= sin^(-1)(x/(sqrt(1+x^2))) + cos^(-1)(1/(sqrt(1+x^2))) , prove that (dy)/(dx)=(2x)/(1+x^2) .

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), Find dy/dx

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

If tan ^(-1) x + tan ^(-1) .sqrt( 1 - y^(2))/y = pi/3 " and " sin^(-1) y - cos^(-1) ( x/(sqrt( 1 + x^(2)))) = pi/6 " , then " ( 5 sin^(-1) x)/( sin^(-1) y) is

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

If x_1=cos^(-1)(3/5)+cos^(-1)((2sqrt2)/3)and x_2=sin^(-1)(3/5)+sin^(-1)((2sqrt2)/3) , then

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

If x ,y in R satify the equation x^2+y^2-4x-2y+5=0, then the value of the expression [(sqrt(x)-sqrt(y))^2+4sqrt(x y)]//(x+sqrt(x y)) is sqrt(2)+1 b. (sqrt(2)+1)/2 c. (sqrt(2)-1)/2 d. (sqrt(2)+1)/(sqrt(2))

If sin^(-1)x_i in [0,1]AAi=1,2,3, .28 then find the maximum value of sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+ sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)