Home
Class 12
MATHS
Let alpha, beta are the roots of the equ...

Let `alpha, beta` are the roots of the equation `x^(2)+7x+k(k-3)=0`, where `k in (0, 3)` and k is a constant. Then the value of `tan^(-1)alpha+tan^(-1)beta+"tan"^(-1)(1)/(alpha)+"tan"^(-1)(1)/(beta)` is :

A

`pi`

B

`(pi)/(2)`

C

0

D

`-(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1} \alpha + \tan^{-1} \beta + \tan^{-1} \frac{1}{\alpha} + \tan^{-1} \frac{1}{\beta} \), where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( x^2 + 7x + k(k-3) = 0 \). ### Step 1: Identify the roots The roots \( \alpha \) and \( \beta \) of the quadratic equation can be found using Vieta's formulas: - The sum of the roots \( \alpha + \beta = -\frac{\text{coefficient of } x}{\text{coefficient of } x^2} = -7 \). - The product of the roots \( \alpha \beta = \frac{\text{constant term}}{\text{coefficient of } x^2} = k(k-3) \). ### Step 2: Use the formula for the sum of inverse tangents We will use the formula: \[ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right) \] Applying this to \( \tan^{-1} \alpha + \tan^{-1} \beta \): \[ \tan^{-1} \alpha + \tan^{-1} \beta = \tan^{-1} \left( \frac{\alpha + \beta}{1 - \alpha \beta} \right) = \tan^{-1} \left( \frac{-7}{1 - k(k-3)} \right) \] ### Step 3: Calculate \( \tan^{-1} \frac{1}{\alpha} + \tan^{-1} \frac{1}{\beta} \) Using the same formula for \( \tan^{-1} \frac{1}{\alpha} + \tan^{-1} \frac{1}{\beta} \): \[ \tan^{-1} \frac{1}{\alpha} + \tan^{-1} \frac{1}{\beta} = \tan^{-1} \left( \frac{\frac{1}{\alpha} + \frac{1}{\beta}}{1 - \frac{1}{\alpha \beta}} \right) = \tan^{-1} \left( \frac{\frac{\beta + \alpha}{\alpha \beta}}{1 - \frac{1}{\alpha \beta}} \right) \] Substituting \( \alpha + \beta = -7 \) and \( \alpha \beta = k(k-3) \): \[ \tan^{-1} \left( \frac{-7/k(k-3)}{1 - \frac{1}{k(k-3)}} \right) \] This simplifies to: \[ \tan^{-1} \left( \frac{-7}{k(k-3) - 1} \right) \] ### Step 4: Combine the results Now we combine both results: \[ \tan^{-1} \left( \frac{-7}{1 - k(k-3)} \right) + \tan^{-1} \left( \frac{-7}{k(k-3) - 1} \right) \] Using the property \( \tan^{-1} x + \tan^{-1} (-x) = 0 \): \[ \tan^{-1} \left( \frac{-7}{1 - k(k-3)} \right) + \tan^{-1} \left( \frac{7}{1 - k(k-3)} \right) = 0 \] ### Final Result Thus, the value of \( \tan^{-1} \alpha + \tan^{-1} \beta + \tan^{-1} \frac{1}{\alpha} + \tan^{-1} \frac{1}{\beta} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

If alpha,beta are the roots of the equation x^(2)+x+1=0 , find the value of alpha^(3)-beta^(3) .

If alpha,beta are the roots of the equation x^2-2x+4=0 , find alpha^(n)+beta^(n) for (a) n=3k, k in N

If alpha " and " beta ( alpha gt beta) are roots of the equation x^(2) - sqrt2 x + sqrt( 3 - 2 sqrt 2 ) = 0", then the value of " ( cos^(-1) alpha + tan^(-1) alpha + tan ^(-1) beta) is equal to

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

If alpha, beta are the roots of x^(2) + 7x + 3 = 0 then (alpha – 1)^(2) + (beta – 1)^(2) =

If alpha and beta are the roots of the equation x^2+4x + 1=0(alpha > beta) then find the value of 1/(alpha)^2 + 1/(beta)^2

If alpha, beta are the roots of the equation x^(2)-7x+1=0 then value of {(1)/((alpha-7)^(2))+(1)/(beta-7)^(2))} - {((alpha^(2)+1)/(beta^(2)+1))+((beta^(2)+1)/(alpha^(2)+1))} is

If tan "" (alpha )/(2) and tan "" (beta)/( 2) are the roots of the equation 8x ^(2) -26x + 15 =0, then find the value of cos (alpha + beta).

Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0 . Then, for y ne 0 in R. [{:(y+1, alpha,beta), (alpha, y+beta, 1),(beta, 1, y+alpha):}] is