Home
Class 12
MATHS
If [sin ^(-1)(cos^(-1)(sin^(-1)(tan^( -...

If `[sin ^(-1)(cos^(-1)(sin^(-1)(tan^( -1)x)))]=1` where [.] denotes integer function, then complete set of values of x is :

A

`[tan(sin(cos1)), tan(cos(sin1))]`

B

`[tan(sin(cos1)), tan(sin(cos(sin1)))]`

C

`[tan(cos(sin1)), tan(sin(cos(sin1)))]`

D

`[tan(sin(cos1)), 1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([ \sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1} x))) ] = 1\), where \([.]\) denotes the integer function, we will break it down step by step. ### Step 1: Understand the Equation We start with the equation: \[ \sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1} x))) = y \] where \(y\) is such that \([y] = 1\). This means \(1 \leq y < 2\). ### Step 2: Analyze the Range of \(\sin^{-1}\) The function \(\sin^{-1}(z)\) has a range of \([- \frac{\pi}{2}, \frac{\pi}{2}]\). For \(\sin^{-1}(\tan^{-1} x)\), we need to find the range of \(\tan^{-1} x\). ### Step 3: Range of \(\tan^{-1} x\) The range of \(\tan^{-1} x\) is \((-\frac{\pi}{2}, \frac{\pi}{2})\). Therefore, \(\sin^{-1}(\tan^{-1} x)\) will also be within the range of \([- \frac{\pi}{2}, \frac{\pi}{2}]\). ### Step 4: Substitute and Simplify Let: \[ z = \tan^{-1} x \implies \sin^{-1}(z) = \theta \] Then: \[ \sin \theta = \tan^{-1} x \] Now we need to evaluate \(\cos^{-1}(\theta)\). ### Step 5: Evaluate \(\cos^{-1}(\theta)\) Since \(\theta = \sin^{-1}(\tan^{-1} x)\), we have: \[ \cos^{-1}(\theta) = \frac{\pi}{2} - \theta \] Thus: \[ \sin^{-1}(\cos^{-1}(\theta)) = \sin^{-1}\left(\frac{\pi}{2} - \sin^{-1}(\tan^{-1} x)\right) \] ### Step 6: Set Up the Final Equation Now we have: \[ \sin^{-1}\left(\frac{\pi}{2} - \sin^{-1}(\tan^{-1} x)\right) = y \] For \([y] = 1\), we need: \[ 1 \leq \frac{\pi}{2} - \sin^{-1}(\tan^{-1} x) < 2 \] ### Step 7: Solve the Inequalities From \(1 \leq \frac{\pi}{2} - \sin^{-1}(\tan^{-1} x)\): \[ \sin^{-1}(\tan^{-1} x) \leq \frac{\pi}{2} - 1 \] And from \(\frac{\pi}{2} - \sin^{-1}(\tan^{-1} x) < 2\): \[ \sin^{-1}(\tan^{-1} x) > \frac{\pi}{2} - 2 \] ### Step 8: Find Values of \(x\) Now we need to find the values of \(x\) that satisfy these inequalities. We can convert \(\sin^{-1}\) back to \(x\) using the properties of inverse functions. ### Conclusion The complete set of values of \(x\) that satisfies the original equation is: \[ x \in \left( \tan\left(\sin\left(\frac{\pi}{2} - 1\right)\right), \tan\left(\sin\left(\frac{\pi}{2} - 2\right)\right) \right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

f(x)=sin^(-1)[e^(x)]+sin^(-1)[e^(-x)] where [.] greatest integer function then

If [cot^(-1)x]+[cos^(-1)x]=0 , where [] denotes the greatest integer functions, then the complete set of values of x is (a) (cos1,1) (b) cos1,cos1) (c) (cot1,1] (d) none of these

If [cot^(-1)x]+[cos^(-1)x]=0 , where [] denotes the greatest integer functions, then the complete set of values of x is (cos1,1) (b) cos1,cos1) (cot1,1) (d) none of these

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Sove [cot^(-1) x] + [cos^(-1) x] =0 , where [.] denotes the greatest integer function

If 3 le a lt 4 then the value of sin^(-1)(sin[a])+tan^(-1)(tan[a])+sec^(-1)(sec[a]) , where [x] denotes greatest integer function less than or equal to x, is equal to :

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.