Home
Class 12
MATHS
The value of tan^(-1)1+tan^(-1)2+tan^(-1...

The value of `tan^(-1)1+tan^(-1)2+tan^(-1)3` is

A

(a)`(pi)/(2)`

B

(b)`pi`

C

(c)`(3pi)/(4)`

D

(d)`(5pi)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) \), we can use the identity for the sum of two inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \quad \text{if } xy < 1 \] If \( xy > 1 \), we need to add \( \pi \) to the result. ### Step 1: Calculate \( \tan^{-1}(1) + \tan^{-1}(2) \) Let \( x = 1 \) and \( y = 2 \): \[ \tan^{-1}(1) + \tan^{-1}(2) = \tan^{-1}\left(\frac{1 + 2}{1 - 1 \cdot 2}\right) \] Calculating the numerator and denominator: - Numerator: \( 1 + 2 = 3 \) - Denominator: \( 1 - 1 \cdot 2 = 1 - 2 = -1 \) Thus, \[ \tan^{-1}(1) + \tan^{-1}(2) = \tan^{-1}\left(\frac{3}{-1}\right) = \tan^{-1}(-3) \] ### Step 2: Combine with \( \tan^{-1}(3) \) Now we have: \[ \tan^{-1}(-3) + \tan^{-1}(3) \] Using the identity again: Let \( x = -3 \) and \( y = 3 \): \[ \tan^{-1}(-3) + \tan^{-1}(3) = \tan^{-1}\left(\frac{-3 + 3}{1 - (-3)(3)}\right) \] Calculating the numerator and denominator: - Numerator: \( -3 + 3 = 0 \) - Denominator: \( 1 - (-3)(3) = 1 + 9 = 10 \) Thus, \[ \tan^{-1}(-3) + \tan^{-1}(3) = \tan^{-1}\left(\frac{0}{10}\right) = \tan^{-1}(0) \] ### Step 3: Final Result We know that: \[ \tan^{-1}(0) = 0 \] However, we need to check the signs. Since \( \tan^{-1}(-3) \) is in the fourth quadrant and \( \tan^{-1}(3) \) is in the first quadrant, they cancel each other out. Thus, we have: \[ \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) = \tan^{-1}(0) + \pi = \pi \] ### Conclusion Therefore, the value of \( \tan^{-1}(1) + \tan^{-1}(2) + \tan^{-1}(3) \) is \( \pi \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|6 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|27 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

The value of tan^(-1)tan(-6) is

The vlaue of tan^(-1)1/2+tan^(-1)1/3 is

Find the value of 4tan^(-1)1/5-tan^(-1)1/(70)+tan^(-1)1/(99)

Prove that tan^(-1)1+tan^(-1)2+tan^(-1)3 =pi

Prove that: tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that : tan^(-1)1+tan^(-1)2+tan^(-1)3=pi

Prove that : tan^(-1) 1 + tan^(-1) 2 + tan^(-1) 3= pi = 2(tan^(-1) 1 + tan^(-1)((1)/(2)) + tan^(-1)( (1)/(3)))

The value of tan^-1(1/3)+tan^-1(2/9)+tan^-1(4/33)+tan^-1(8/129)+....n terms is:

The value of tan(tan^(-1)5+"cot"^(-1)(1)/(3)) is :

The value of cos(tan^-1 (tan 2)) is